Macroscale Fabrication of Lightweight and Strong Porous Carbon Foams through Template-Coating Pair Design

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 9 vom: 17. März, Seite e2206416
1. Verfasser: Suresh, Adarsh (VerfasserIn)
Weitere Verfasser: Rowan, Stuart J, Liu, Chong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article dimensional stability macroscale porous carbon foam porous polymers pyrolytic carbon specific strength template-coating pairs
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Manufacturing of low-density-high-strength carbon foams can benefit the construction, transportation, and packaging industries. One successful route to lightweight and mechanically strong carbon foams involves pyrolysis of polymeric architectures, which is inevitably accompanied by drastic volumetric shrinkage (usually >98%). As such, a challenge of these materials lies in maintaining bulk dimensions of building struts that span orders of magnitude difference in length scale from centimeters to nanometers. This work demonstrates fabrication of macroscale low-density-high-strength carbon foams that feature exceptional dimensional stability through pyrolysis of robust template-coating pairs. The template serves as the architectural blueprint and contains strength-imparting properties (e.g., high node density and small strut dimensions); it is composed of a low char-yielding porous polystyrene backbone with a high carbonization-onset temperature. The coating serves to imprint and transcribe the template architecture into pyrolytic carbon; it is composed of a high char-yielding conjugated polymer with a relatively low carbonization-onset temperature. The designed carbonization mismatch enables structural inheritance, while the decomposition mismatch affords hollow struts, minimizing density. The carbons synthesized through this new framework exhibit remarkable dimensional stability (≈80% dimension retention; ≈50% volume retention) and some of the highest specific strengths (≈0.13 GPa g-1 cm3 ) among reported carbon foams derived from porous polymer templates
Beschreibung:Date Completed 02.03.2023
Date Revised 02.03.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202206416