|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM349742375 |
003 |
DE-627 |
005 |
20231226043343.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202207234
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1165.xml
|
035 |
|
|
|a (DE-627)NLM349742375
|
035 |
|
|
|a (NLM)36461688
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yu, Ruizhi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Manipulating Charge-Transfer Kinetics of Lithium-Rich Layered Oxide Cathodes in Halide All-Solid-State Batteries
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 03.02.2023
|
500 |
|
|
|a Date Revised 03.02.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Employing lithium-rich layered oxide (LLO) as the cathode of all-solid-state batteries (ASSBs) is highly desired for realizing high energy density. However, the poor kinetics of LLO, caused by its low electronic conductivity and significant oxygen-redox-induced structural degradation, has impeded its application in ASSBs. Here, the charge transfer kinetics of LLO is enhanced by constructing high-efficiency electron transport networks within solid-state electrodes, which considerably minimizes electron transfer resistance. In addition, an infusion-plus-coating strategy is introduced to stabilize the lattice oxygen of LLO, successfully suppressing the interfacial oxidation of solid electrolyte (Li3 InCl6 ) and structural degradation of LLO. As a result, LLO-based ASSBs exhibit a high discharge capacity of 230.7 mAh g-1 at 0.1 C and ultra-long cycle stability over 400 cycles. This work provides an in-depth understanding of the kinetics of LLO in solid-state electrodes, and affords a practically feasible strategy to obtain high-energy-density ASSBs
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a all-solid-state batteries
|
650 |
|
4 |
|a charge-transfer kinetics
|
650 |
|
4 |
|a lithium-rich layered oxide
|
650 |
|
4 |
|a oxygen redox
|
650 |
|
4 |
|a solid-state halide electrolyte
|
700 |
1 |
|
|a Wang, Changhong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Duan, Hui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Ming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Anbang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fraser, Adam
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zuo, Jiaxuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Yanlong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Yipeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Jianwen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fu, Jiamin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Sixu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ren, Zhimin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Guohua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Huan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Ruying
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Ning
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Jiantao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Xifei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Singh, Chandra Veer
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Xueliang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 5 vom: 03. Feb., Seite e2207234
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:5
|g day:03
|g month:02
|g pages:e2207234
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202207234
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 5
|b 03
|c 02
|h e2207234
|