Enabling Durable Ultralow-k Capacitors with Enhanced Breakdown Strength in Density-Variant Nanolattices

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 6 vom: 01. Feb., Seite e2208409
1. Verfasser: Kim, Min-Woo (VerfasserIn)
Weitere Verfasser: Lifson, Max L, Gallivan, Rebecca, Greer, Julia R, Kim, Bong-Joong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article density-variant nanolattice electrical breakdown electrical conduction mechanism mechanical deformation ultralow-k
LEADER 01000naa a22002652 4500
001 NLM348941242
003 DE-627
005 20231226041456.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202208409  |2 doi 
028 5 2 |a pubmed24n1163.xml 
035 |a (DE-627)NLM348941242 
035 |a (NLM)36380720 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Min-Woo  |e verfasserin  |4 aut 
245 1 0 |a Enabling Durable Ultralow-k Capacitors with Enhanced Breakdown Strength in Density-Variant Nanolattices 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.02.2023 
500 |a Date Revised 10.02.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Ultralow-k materials used in high voltage devices require mechanical resilience and electrical and dielectric stability even when subjected to mechanical loads. Existing devices with organic polymers suffer from low thermal and mechanical stability while those with inorganic porous structures struggle with poor mechanical integrity. Recently, 3D hollow-beam nanolattices have emerged as promising candidates that satisfy these requirements. However, their properties are maintained for only five stress cycles at strains below 25%. Here, we demonstrate that alumina nanolattices with different relative density distributions across their height elicit a deterministic mechanical response concomitant with a 1.5-3.3 times higher electrical breakdown strength than nanolattices with uniform density. These density-variant nanolattices exhibit an ultralow-k of ≈1.2, accompanied by complete electric and dielectric stability and mechanical recoverability over 100 cyclic compressions to 62.5% strain. We explain the enhanced insulation and long-term cyclical stability by the bi-phase deformation where the lower-density region protects the higher-density region as it is compressed before the higher-density region, allowing to simultaneously possess high strength and ductility like composites. This study highlights the superior electrical performance of the bi-phase nanolattice with a single interface in providing stable conduction and maximum breakdown strength 
650 4 |a Journal Article 
650 4 |a density-variant nanolattice 
650 4 |a electrical breakdown 
650 4 |a electrical conduction mechanism 
650 4 |a mechanical deformation 
650 4 |a ultralow-k 
700 1 |a Lifson, Max L  |e verfasserin  |4 aut 
700 1 |a Gallivan, Rebecca  |e verfasserin  |4 aut 
700 1 |a Greer, Julia R  |e verfasserin  |4 aut 
700 1 |a Kim, Bong-Joong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 6 vom: 01. Feb., Seite e2208409  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:6  |g day:01  |g month:02  |g pages:e2208409 
856 4 0 |u http://dx.doi.org/10.1002/adma.202208409  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 6  |b 01  |c 02  |h e2208409