An expectation maximization algorithm for high-dimensional model selection for the Ising model with misclassified states

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 16 vom: 01., Seite 4049-4068
1. Verfasser: Sinclair, David G (VerfasserIn)
Weitere Verfasser: Hooker, Giles
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Graphical models LASSO fMRI latent variables variational methods
LEADER 01000naa a22002652 4500
001 NLM348669151
003 DE-627
005 20231226040815.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1970121  |2 doi 
028 5 2 |a pubmed24n1162.xml 
035 |a (DE-627)NLM348669151 
035 |a (NLM)36353302 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sinclair, David G  |e verfasserin  |4 aut 
245 1 3 |a An expectation maximization algorithm for high-dimensional model selection for the Ising model with misclassified states 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.11.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a We propose the misclassified Ising Model: a framework for analyzing dependent binary data where the binary state is susceptible to error. We extend previous theoretical results of a model selection method based on applying the LASSO to logistic regression at each node and show that the method will still correctly identify edges in the underlying graphical model under suitable misclassification settings. With knowledge of the misclassification process, an expectation maximization algorithm is developed that accounts for misclassification during model selection. We illustrate the increase of performance of the proposed expectation maximization algorithm with simulated data, and using data from a functional magnetic resonance imaging analysis 
650 4 |a Journal Article 
650 4 |a Graphical models 
650 4 |a LASSO 
650 4 |a fMRI 
650 4 |a latent variables 
650 4 |a variational methods 
700 1 |a Hooker, Giles  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 16 vom: 01., Seite 4049-4068  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:49  |g year:2022  |g number:16  |g day:01  |g pages:4049-4068 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1970121  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 16  |b 01  |h 4049-4068