|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM348669151 |
003 |
DE-627 |
005 |
20231226040815.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/02664763.2021.1970121
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1162.xml
|
035 |
|
|
|a (DE-627)NLM348669151
|
035 |
|
|
|a (NLM)36353302
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sinclair, David G
|e verfasserin
|4 aut
|
245 |
1 |
3 |
|a An expectation maximization algorithm for high-dimensional model selection for the Ising model with misclassified states
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 11.11.2022
|
500 |
|
|
|a published: Electronic-eCollection
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Informa UK Limited, trading as Taylor & Francis Group.
|
520 |
|
|
|a We propose the misclassified Ising Model: a framework for analyzing dependent binary data where the binary state is susceptible to error. We extend previous theoretical results of a model selection method based on applying the LASSO to logistic regression at each node and show that the method will still correctly identify edges in the underlying graphical model under suitable misclassification settings. With knowledge of the misclassification process, an expectation maximization algorithm is developed that accounts for misclassification during model selection. We illustrate the increase of performance of the proposed expectation maximization algorithm with simulated data, and using data from a functional magnetic resonance imaging analysis
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Graphical models
|
650 |
|
4 |
|a LASSO
|
650 |
|
4 |
|a fMRI
|
650 |
|
4 |
|a latent variables
|
650 |
|
4 |
|a variational methods
|
700 |
1 |
|
|a Hooker, Giles
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of applied statistics
|d 1991
|g 49(2022), 16 vom: 01., Seite 4049-4068
|w (DE-627)NLM098188178
|x 0266-4763
|7 nnns
|
773 |
1 |
8 |
|g volume:49
|g year:2022
|g number:16
|g day:01
|g pages:4049-4068
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/02664763.2021.1970121
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 49
|j 2022
|e 16
|b 01
|h 4049-4068
|