An expectation maximization algorithm for high-dimensional model selection for the Ising model with misclassified states

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 16 vom: 01., Seite 4049-4068
1. Verfasser: Sinclair, David G (VerfasserIn)
Weitere Verfasser: Hooker, Giles
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Graphical models LASSO fMRI latent variables variational methods
Beschreibung
Zusammenfassung:© 2021 Informa UK Limited, trading as Taylor & Francis Group.
We propose the misclassified Ising Model: a framework for analyzing dependent binary data where the binary state is susceptible to error. We extend previous theoretical results of a model selection method based on applying the LASSO to logistic regression at each node and show that the method will still correctly identify edges in the underlying graphical model under suitable misclassification settings. With knowledge of the misclassification process, an expectation maximization algorithm is developed that accounts for misclassification during model selection. We illustrate the increase of performance of the proposed expectation maximization algorithm with simulated data, and using data from a functional magnetic resonance imaging analysis
Beschreibung:Date Revised 11.11.2022
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0266-4763
DOI:10.1080/02664763.2021.1970121