A new class of efficient and debiased two-step shrinkage estimators : method and application

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 16 vom: 01., Seite 4181-4205
1. Verfasser: Qasim, Muhammad (VerfasserIn)
Weitere Verfasser: Månsson, Kristofer, Sjölander, Pär, Kibria, B M Golam
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Debiased estimator Monte Carlo simulations chemical structures multicollinearity ridge regression two-parameter estimator
LEADER 01000naa a22002652 4500
001 NLM348669119
003 DE-627
005 20231226040815.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1973389  |2 doi 
028 5 2 |a pubmed24n1162.xml 
035 |a (DE-627)NLM348669119 
035 |a (NLM)36353298 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qasim, Muhammad  |e verfasserin  |4 aut 
245 1 2 |a A new class of efficient and debiased two-step shrinkage estimators  |b method and application 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.11.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
520 |a This paper introduces a new class of efficient and debiased two-step shrinkage estimators for a linear regression model in the presence of multicollinearity. We derive the proposed estimators' mean square error and define the necessary and sufficient conditions for superiority over the existing estimators. In addition, we develop an algorithm for selecting the shrinkage parameters for the proposed estimators. The comparison of the new estimators versus the traditional ordinary least squares, ridge regression, Liu, and the two-parameter estimators is done by a matrix mean square error criterion. The Monte Carlo simulation results show the superiority of the proposed estimators under certain conditions. In the presence of high but imperfect multicollinearity, the two-step shrinkage estimators' performance is relatively better. Finally, two real-world chemical data are analyzed to demonstrate the advantages and the empirical relevance of our newly proposed estimators. It is shown that the standard errors and the estimated mean square error decrease substantially for the proposed estimator. Hence, the precision of the estimated parameters is increased, which of course is one of the main objectives of the practitioners 
650 4 |a Journal Article 
650 4 |a Debiased estimator 
650 4 |a Monte Carlo simulations 
650 4 |a chemical structures 
650 4 |a multicollinearity 
650 4 |a ridge regression 
650 4 |a two-parameter estimator 
700 1 |a Månsson, Kristofer  |e verfasserin  |4 aut 
700 1 |a Sjölander, Pär  |e verfasserin  |4 aut 
700 1 |a Kibria, B M Golam  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 16 vom: 01., Seite 4181-4205  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:49  |g year:2022  |g number:16  |g day:01  |g pages:4181-4205 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1973389  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 16  |b 01  |h 4181-4205