A new class of efficient and debiased two-step shrinkage estimators : method and application

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 16 vom: 01., Seite 4181-4205
1. Verfasser: Qasim, Muhammad (VerfasserIn)
Weitere Verfasser: Månsson, Kristofer, Sjölander, Pär, Kibria, B M Golam
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Debiased estimator Monte Carlo simulations chemical structures multicollinearity ridge regression two-parameter estimator
Beschreibung
Zusammenfassung:© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This paper introduces a new class of efficient and debiased two-step shrinkage estimators for a linear regression model in the presence of multicollinearity. We derive the proposed estimators' mean square error and define the necessary and sufficient conditions for superiority over the existing estimators. In addition, we develop an algorithm for selecting the shrinkage parameters for the proposed estimators. The comparison of the new estimators versus the traditional ordinary least squares, ridge regression, Liu, and the two-parameter estimators is done by a matrix mean square error criterion. The Monte Carlo simulation results show the superiority of the proposed estimators under certain conditions. In the presence of high but imperfect multicollinearity, the two-step shrinkage estimators' performance is relatively better. Finally, two real-world chemical data are analyzed to demonstrate the advantages and the empirical relevance of our newly proposed estimators. It is shown that the standard errors and the estimated mean square error decrease substantially for the proposed estimator. Hence, the precision of the estimated parameters is increased, which of course is one of the main objectives of the practitioners
Beschreibung:Date Revised 11.11.2022
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0266-4763
DOI:10.1080/02664763.2021.1973389