|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM348637497 |
003 |
DE-627 |
005 |
20231226040731.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2144/btn-2022-0068
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1162.xml
|
035 |
|
|
|a (DE-627)NLM348637497
|
035 |
|
|
|a (NLM)36350046
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Harikai, Naoki
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Real-time PCR method for detection of short DNA using a deoxyuridine probe and application for detection of fomivirsen
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.12.2022
|
500 |
|
|
|a Date Revised 22.12.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a This study sought to develop a short DNA detection method using a deoxyuridine probe and polymerase chain reaction. The probe was hybridized to the target short DNA, which was then extended by DNA polymerase. The extended DNA was used for real-time PCR after the probe was removed by uracil DNA glycosylase. This method measured from 0.01 to 10 nM of a model short DNA sequence of 17 nucleotides. The method was then used to detect the nucleic acid medicine fomivirsen, as well as 21 phosphorothioate nucleotides, and to quantify 0.1-100 nM of fomivirsen. This method may be useful for detecting short DNA fragments, such as functional nucleotides
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a fomivirsen
|
650 |
|
4 |
|a nucleic acid medicine
|
650 |
|
4 |
|a polymerase chain reaction
|
650 |
|
4 |
|a short DNA
|
650 |
|
4 |
|a uracil DNA glycosylase
|
650 |
|
7 |
|a fomivirsen
|2 NLM
|
650 |
|
7 |
|a QX5LK7YCHV
|2 NLM
|
650 |
|
7 |
|a DNA
|2 NLM
|
650 |
|
7 |
|a 9007-49-2
|2 NLM
|
650 |
|
7 |
|a Thionucleotides
|2 NLM
|
650 |
|
7 |
|a Deoxyuridine
|2 NLM
|
650 |
|
7 |
|a W78I7AY22C
|2 NLM
|
700 |
1 |
|
|a Tanaka, Yuko
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Miyashita, Satoshi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zaima, Kazumasa
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shinomiya, Kazufusa
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t BioTechniques
|d 1988
|g 73(2022), 6 vom: 18. Dez., Seite 281-287
|w (DE-627)NLM012627046
|x 1940-9818
|7 nnns
|
773 |
1 |
8 |
|g volume:73
|g year:2022
|g number:6
|g day:18
|g month:12
|g pages:281-287
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2144/btn-2022-0068
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_21
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_50
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_99
|
912 |
|
|
|a GBV_ILN_121
|
912 |
|
|
|a GBV_ILN_130
|
912 |
|
|
|a GBV_ILN_227
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_618
|
912 |
|
|
|a GBV_ILN_640
|
912 |
|
|
|a GBV_ILN_754
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2002
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2012
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2023
|
912 |
|
|
|a GBV_ILN_2035
|
912 |
|
|
|a GBV_ILN_2040
|
912 |
|
|
|a GBV_ILN_2060
|
912 |
|
|
|a GBV_ILN_2099
|
912 |
|
|
|a GBV_ILN_2105
|
912 |
|
|
|a GBV_ILN_2121
|
912 |
|
|
|a GBV_ILN_2470
|
951 |
|
|
|a AR
|
952 |
|
|
|d 73
|j 2022
|e 6
|b 18
|c 12
|h 281-287
|