|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM348354851 |
003 |
DE-627 |
005 |
20231226035957.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2144/btn-2022-0096
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1161.xml
|
035 |
|
|
|a (DE-627)NLM348354851
|
035 |
|
|
|a (NLM)36321500
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Yinhua
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Efficient multiplexing and variant discrimination in reverse-transcription loop-mediated isothermal amplification with sequence-specific hybridization probes
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.11.2022
|
500 |
|
|
|a Date Revised 04.12.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Loop-mediated isothermal amplification (LAMP) has proven a robust and reliable nucleic acid amplification method that is well suited for simplified and rapid molecular diagnostics. Various approaches have emerged for sequence-specific detection of LAMP products, but with limitations to their widespread utility or applicability for single-nucleotide polymorphism detection and multiplexing. Here we demonstrate the use of simple hybridization probes (as used for qPCR) that enable simple multiplexing and SARS-CoV-2 variant typing in reverse-transcription LAMP. This approach requires no modification to the LAMP primers and is amenable to the detection of single-nucleotide polymorphisms and small sequence changes, which is usually difficult in LAMP. By extending LAMP's ability to be utilized for multitarget and single-base change detection, we hope to increase its potential to enable more and better molecular diagnostic testing
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a LAMP
|
650 |
|
4 |
|a RT-LAMP
|
650 |
|
4 |
|a SNP discrimination
|
650 |
|
4 |
|a isothermal amplification
|
650 |
|
4 |
|a molecular diagnostics
|
650 |
|
4 |
|a multiplexing
|
650 |
|
4 |
|a variant identification
|
650 |
|
7 |
|a RNA, Viral
|2 NLM
|
700 |
1 |
|
|a Tanner, Nathan A
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t BioTechniques
|d 1988
|g 73(2022), 5 vom: 09. Nov., Seite 247-255
|w (DE-627)NLM012627046
|x 1940-9818
|7 nnns
|
773 |
1 |
8 |
|g volume:73
|g year:2022
|g number:5
|g day:09
|g month:11
|g pages:247-255
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2144/btn-2022-0096
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_21
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_50
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_99
|
912 |
|
|
|a GBV_ILN_121
|
912 |
|
|
|a GBV_ILN_130
|
912 |
|
|
|a GBV_ILN_227
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_618
|
912 |
|
|
|a GBV_ILN_640
|
912 |
|
|
|a GBV_ILN_754
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2002
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2012
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2023
|
912 |
|
|
|a GBV_ILN_2035
|
912 |
|
|
|a GBV_ILN_2040
|
912 |
|
|
|a GBV_ILN_2060
|
912 |
|
|
|a GBV_ILN_2099
|
912 |
|
|
|a GBV_ILN_2105
|
912 |
|
|
|a GBV_ILN_2121
|
912 |
|
|
|a GBV_ILN_2470
|
951 |
|
|
|a AR
|
952 |
|
|
|d 73
|j 2022
|e 5
|b 09
|c 11
|h 247-255
|