TransCS : A Transformer-Based Hybrid Architecture for Image Compressed Sensing

Well-known compressed sensing (CS) is widely used in image acquisition and reconstruction. However, accurately reconstructing images from measurements at low sampling rates remains a considerable challenge. In this paper, we propose a novel Transformer-based hybrid architecture (dubbed TransCS) to a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 16., Seite 6991-7005
1. Verfasser: Shen, Minghe (VerfasserIn)
Weitere Verfasser: Gan, Hongping, Ning, Chao, Hua, Yi, Zhang, Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM348325614
003 DE-627
005 20250304012301.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3217365  |2 doi 
028 5 2 |a pubmed25n1160.xml 
035 |a (DE-627)NLM348325614 
035 |a (NLM)36318549 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Minghe  |e verfasserin  |4 aut 
245 1 0 |a TransCS  |b A Transformer-Based Hybrid Architecture for Image Compressed Sensing 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Well-known compressed sensing (CS) is widely used in image acquisition and reconstruction. However, accurately reconstructing images from measurements at low sampling rates remains a considerable challenge. In this paper, we propose a novel Transformer-based hybrid architecture (dubbed TransCS) to achieve high-quality image CS. In the sampling module, TransCS adopts a trainable sensing matrix strategy that gains better image reconstruction by learning the structural information from the training images. In the reconstruction module, inspired by the powerful long-distance dependence modelling capacity of the Transformer, a customized iterative shrinkage-thresholding algorithm (ISTA)-based Transformer backbone that iteratively works with gradient descent and soft threshold operation is designed to model the global dependency among image subblocks. Moreover, the auxiliary convolutional neural network (CNN) is introduced to capture the local features of images. Therefore, the proposed hybrid architecture that integrates the customized ISTA-based Transformer backbone with CNN can gain high-performance reconstruction for image compressed sensing. The experimental results demonstrate that our proposed TransCS obtains superior reconstruction quality and noise robustness on several public benchmark datasets compared with other state-of-the-art methods. Our code is available on TransCS 
650 4 |a Journal Article 
700 1 |a Gan, Hongping  |e verfasserin  |4 aut 
700 1 |a Ning, Chao  |e verfasserin  |4 aut 
700 1 |a Hua, Yi  |e verfasserin  |4 aut 
700 1 |a Zhang, Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 16., Seite 6991-7005  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:16  |g pages:6991-7005 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3217365  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 16  |h 6991-7005