TransCS : A Transformer-Based Hybrid Architecture for Image Compressed Sensing

Well-known compressed sensing (CS) is widely used in image acquisition and reconstruction. However, accurately reconstructing images from measurements at low sampling rates remains a considerable challenge. In this paper, we propose a novel Transformer-based hybrid architecture (dubbed TransCS) to a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 16., Seite 6991-7005
1. Verfasser: Shen, Minghe (VerfasserIn)
Weitere Verfasser: Gan, Hongping, Ning, Chao, Hua, Yi, Zhang, Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Well-known compressed sensing (CS) is widely used in image acquisition and reconstruction. However, accurately reconstructing images from measurements at low sampling rates remains a considerable challenge. In this paper, we propose a novel Transformer-based hybrid architecture (dubbed TransCS) to achieve high-quality image CS. In the sampling module, TransCS adopts a trainable sensing matrix strategy that gains better image reconstruction by learning the structural information from the training images. In the reconstruction module, inspired by the powerful long-distance dependence modelling capacity of the Transformer, a customized iterative shrinkage-thresholding algorithm (ISTA)-based Transformer backbone that iteratively works with gradient descent and soft threshold operation is designed to model the global dependency among image subblocks. Moreover, the auxiliary convolutional neural network (CNN) is introduced to capture the local features of images. Therefore, the proposed hybrid architecture that integrates the customized ISTA-based Transformer backbone with CNN can gain high-performance reconstruction for image compressed sensing. The experimental results demonstrate that our proposed TransCS obtains superior reconstruction quality and noise robustness on several public benchmark datasets compared with other state-of-the-art methods. Our code is available on TransCS
Beschreibung:Date Revised 15.11.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2022.3217365