Learning to Optimize on Riemannian Manifolds

Many learning tasks are modeled as optimization problems with nonlinear constraints, such as principal component analysis and fitting a Gaussian mixture model. A popular way to solve such problems is resorting to Riemannian optimization algorithms, which yet heavily rely on both human involvement an...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 19. Mai, Seite 5935-5952
1. Verfasser: Gao, Zhi (VerfasserIn)
Weitere Verfasser: Wu, Yuwei, Fan, Xiaomeng, Harandi, Mehrtash, Jia, Yunde
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM347753124
003 DE-627
005 20231226034603.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3215702  |2 doi 
028 5 2 |a pubmed24n1159.xml 
035 |a (DE-627)NLM347753124 
035 |a (NLM)36260581 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Zhi  |e verfasserin  |4 aut 
245 1 0 |a Learning to Optimize on Riemannian Manifolds 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 10.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many learning tasks are modeled as optimization problems with nonlinear constraints, such as principal component analysis and fitting a Gaussian mixture model. A popular way to solve such problems is resorting to Riemannian optimization algorithms, which yet heavily rely on both human involvement and expert knowledge about Riemannian manifolds. In this paper, we propose a Riemannian meta-optimization method to automatically learn a Riemannian optimizer. We parameterize the Riemannian optimizer by a novel recurrent network and utilize Riemannian operations to ensure that our method is faithful to the geometry of manifolds. The proposed method explores the distribution of the underlying data by minimizing the objective of updated parameters, and hence is capable of learning task-specific optimizations. We introduce a Riemannian implicit differentiation training scheme to achieve efficient training in terms of numerical stability and computational cost. Unlike conventional meta-optimization training schemes that need to differentiate through the whole optimization trajectory, our training scheme is only related to the final two optimization steps. In this way, our training scheme avoids the exploding gradient problem, and significantly reduces the computational load and memory footprint. We discuss experimental results across various constrained problems, including principal component analysis on Grassmann manifolds, face recognition, person re-identification, and texture image classification on Stiefel manifolds, clustering and similarity learning on symmetric positive definite manifolds, and few-shot learning on hyperbolic manifolds 
650 4 |a Journal Article 
700 1 |a Wu, Yuwei  |e verfasserin  |4 aut 
700 1 |a Fan, Xiaomeng  |e verfasserin  |4 aut 
700 1 |a Harandi, Mehrtash  |e verfasserin  |4 aut 
700 1 |a Jia, Yunde  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 5 vom: 19. Mai, Seite 5935-5952  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:5  |g day:19  |g month:05  |g pages:5935-5952 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3215702  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 5  |b 19  |c 05  |h 5935-5952