Learning to Optimize on Riemannian Manifolds

Many learning tasks are modeled as optimization problems with nonlinear constraints, such as principal component analysis and fitting a Gaussian mixture model. A popular way to solve such problems is resorting to Riemannian optimization algorithms, which yet heavily rely on both human involvement an...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 19. Mai, Seite 5935-5952
1. Verfasser: Gao, Zhi (VerfasserIn)
Weitere Verfasser: Wu, Yuwei, Fan, Xiaomeng, Harandi, Mehrtash, Jia, Yunde
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article