|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM347065791 |
003 |
DE-627 |
005 |
20231226032933.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TVCG.2022.3209404
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1156.xml
|
035 |
|
|
|a (DE-627)NLM347065791
|
035 |
|
|
|a (NLM)36191103
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yuan, Jun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Visual Analysis of Neural Architecture Spaces for Summarizing Design Principles
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 05.04.2023
|
500 |
|
|
|a Date Revised 05.04.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Recent advances in artificial intelligence largely benefit from better neural network architectures. These architectures are a product of a costly process of trial-and-error. To ease this process, we develop ArchExplorer, a visual analysis method for understanding a neural architecture space and summarizing design principles. The key idea behind our method is to make the architecture space explainable by exploiting structural distances between architectures. We formulate the pairwise distance calculation as solving an all-pairs shortest path problem. To improve efficiency, we decompose this problem into a set of single-source shortest path problems. The time complexity is reduced from O(kn2N) to O(knN). Architectures are hierarchically clustered according to the distances between them. A circle-packing-based architecture visualization has been developed to convey both the global relationships between clusters and local neighborhoods of the architectures in each cluster. Two case studies and a post-analysis are presented to demonstrate the effectiveness of ArchExplorer in summarizing design principles and selecting better-performing architectures
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Liu, Mengchen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tian, Fengyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Shixia
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on visualization and computer graphics
|d 1996
|g 29(2023), 1 vom: 01. Jan., Seite 288-298
|w (DE-627)NLM098269445
|x 1941-0506
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2023
|g number:1
|g day:01
|g month:01
|g pages:288-298
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TVCG.2022.3209404
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2023
|e 1
|b 01
|c 01
|h 288-298
|