Level Set Restricted Voronoi Tessellation for Large scale Spatial Statistical Analysis

Spatial statistical analysis of multivariate volumetric data can be challenging due to scale, complexity, and occlusion. Advances in topological segmentation, feature extraction, and statistical summarization have helped overcome the challenges. This work introduces a new spatial statistical decompo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 1 vom: 27. Jan., Seite 548-558
1. Verfasser: Neuroth, Tyson (VerfasserIn)
Weitere Verfasser: Rieth, Martin, Aditya, Konduri, Lee, Myoungkyu, Chen, Jacqueline H, Ma, Kwan-Liu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM34682172X
003 DE-627
005 20231226032352.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3209473  |2 doi 
028 5 2 |a pubmed24n1156.xml 
035 |a (DE-627)NLM34682172X 
035 |a (NLM)36166541 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Neuroth, Tyson  |e verfasserin  |4 aut 
245 1 0 |a Level Set Restricted Voronoi Tessellation for Large scale Spatial Statistical Analysis 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Spatial statistical analysis of multivariate volumetric data can be challenging due to scale, complexity, and occlusion. Advances in topological segmentation, feature extraction, and statistical summarization have helped overcome the challenges. This work introduces a new spatial statistical decomposition method based on level sets, connected components, and a novel variation of the restricted centroidal Voronoi tessellation that is better suited for spatial statistical decomposition and parallel efficiency. The resulting data structures organize features into a coherent nested hierarchy to support flexible and efficient out-of-core region-of-interest extraction. Next, we provide an efficient parallel implementation. Finally, an interactive visualization system based on this approach is designed and then applied to turbulent combustion data. The combined approach enables an interactive spatial statistical analysis workflow for large-scale data with a top-down approach through multiple-levels-of-detail that links phase space statistics with spatial features 
650 4 |a Journal Article 
700 1 |a Rieth, Martin  |e verfasserin  |4 aut 
700 1 |a Aditya, Konduri  |e verfasserin  |4 aut 
700 1 |a Lee, Myoungkyu  |e verfasserin  |4 aut 
700 1 |a Chen, Jacqueline H  |e verfasserin  |4 aut 
700 1 |a Ma, Kwan-Liu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 1 vom: 27. Jan., Seite 548-558  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:1  |g day:27  |g month:01  |g pages:548-558 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3209473  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 1  |b 27  |c 01  |h 548-558