Level Set Restricted Voronoi Tessellation for Large scale Spatial Statistical Analysis

Spatial statistical analysis of multivariate volumetric data can be challenging due to scale, complexity, and occlusion. Advances in topological segmentation, feature extraction, and statistical summarization have helped overcome the challenges. This work introduces a new spatial statistical decompo...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 1 vom: 27. Jan., Seite 548-558
Auteur principal: Neuroth, Tyson (Auteur)
Autres auteurs: Rieth, Martin, Aditya, Konduri, Lee, Myoungkyu, Chen, Jacqueline H, Ma, Kwan-Liu
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
Description
Résumé:Spatial statistical analysis of multivariate volumetric data can be challenging due to scale, complexity, and occlusion. Advances in topological segmentation, feature extraction, and statistical summarization have helped overcome the challenges. This work introduces a new spatial statistical decomposition method based on level sets, connected components, and a novel variation of the restricted centroidal Voronoi tessellation that is better suited for spatial statistical decomposition and parallel efficiency. The resulting data structures organize features into a coherent nested hierarchy to support flexible and efficient out-of-core region-of-interest extraction. Next, we provide an efficient parallel implementation. Finally, an interactive visualization system based on this approach is designed and then applied to turbulent combustion data. The combined approach enables an interactive spatial statistical analysis workflow for large-scale data with a top-down approach through multiple-levels-of-detail that links phase space statistics with spatial features
Description:Date Completed 05.04.2023
Date Revised 05.04.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2022.3209473