Simulation Study of Electric Double-Layer Capacitance of Ordered Carbon Electrodes

Supercapacitors are electrochemical energy storage devices having high capacitance, high power density, long cycle life, low cost, easy maintenance, and negligible environmental pollution. The formation of an electric double layer at the electrode-electrolyte interface is mostly responsible for supe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 38(2022), 40 vom: 11. Okt., Seite 12235-12247
1. Verfasser: Nigam, Ravi (VerfasserIn)
Weitere Verfasser: Kar, Kamal K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Supercapacitors are electrochemical energy storage devices having high capacitance, high power density, long cycle life, low cost, easy maintenance, and negligible environmental pollution. The formation of an electric double layer at the electrode-electrolyte interface is mostly responsible for supercapacitors' energy storage. The simulation study of equilibrium electric double-layer capacitance (EDLC) in 3D arranged mesoporous carbon electrodes with a simple cubic morphology and interdigitated electrodes has been done. Continuum theory has been utilized to study the underlying processes involved in EDLC. Interfacial polarization and ion crowding depend on the electrode's critical thickness. Porosity increases the capacitance due to the increase in the electrode surface area. The diffuse-layer specific capacitance of ordered mesoporous carbon electrodes in a (C2H5)4NBF4/propylene carbonate organic electrolyte is in the range of 3.2-13.3 μF cm-2, varying according to the electrode thickness. The Stern-layer specific capacitance is 167.6 μF cm-2, and total equilibrium EDLC is in the range of 3.1-12.3 μF cm-2. The effect of the electric field at the electrode-electrolyte interface on reducing electrolyte permittivity has also been discussed. The EDLC of carbonized interdigitated electrodes is analyzed in a 6 M KOH electrolyte. The diffuse-layer specific capacitance ranges from 118.7 to 352.0 μF cm-2 depending on the width of the interdigitated electrodes. The Stern-layer specific capacitance is 91.2 μF cm-2, and the total EDLC value is 51.6-72.4 μF cm-2. The modeling and simulation approach can be applied to different mesoporous electrodes by varying the supercapacitor component's parameters and geometry
Beschreibung:Date Revised 11.10.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c01865