|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM346451159 |
003 |
DE-627 |
005 |
20231226031505.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202207392
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1154.xml
|
035 |
|
|
|a (DE-627)NLM346451159
|
035 |
|
|
|a (NLM)36128664
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Lihong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Interface Capture Effect Printing Atomic-Thick 2D Semiconductor Thin Films
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 09.12.2022
|
500 |
|
|
|a Date Revised 09.12.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a 2D semiconductor crystals offer the opportunity to further extend Moore's law to the atomic scale. For practical and low-cost electronic applications, directly printing devices on substrates is advantageous compared to conventional microfabrication techniques that utilize expensive photolithography, etching, and vacuum-metallization processes. However, the currently printed 2D transistors are plagued by unsatisfactory electrical performance, thick semiconductor layers, and low device density. Herein, a facile and scalable 2D semiconductor printing strategy is demonstrated utilizing the interface capture effect and hyperdispersed 2D nanosheet ink to fabricate high-quality and atomic-thick semiconductor thin-film arrays without additional surfactants. Printed robust thin-film transistors using 2D semiconductors (e.g., MoS2 ) and 2D conductive electrodes (e.g., graphene) exhibit high electrical performance, including a carrier mobility of up to 6.7 cm2 V-1 s-1 and an on/off ratio of 2 × 106 at 25 °C. As a proof of concept, 2D transistors are printed with a density of ≈47 000 devices per square centimeter. In addition, this method can be applied to many other 2D materials, such as NbSe2 , Bi2 Se3 , and black phosphorus, for printing diverse high-quality thin films. Thus, the strategy of printable 2D thin-film transistors provides a scalable pathway for the facile manufacturing of high-performance electronics at an affordable cost
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D materials
|
650 |
|
4 |
|a direct-writing
|
650 |
|
4 |
|a printing
|
650 |
|
4 |
|a transistors
|
700 |
1 |
|
|a Yu, Xiaoxia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Zhaoyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cai, Zhenren
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Yawei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kong, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiang, Zhongyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gu, Zhengkun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xing, Xianran
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Duan, Xiangfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Yanlin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 49 vom: 29. Dez., Seite e2207392
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:49
|g day:29
|g month:12
|g pages:e2207392
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202207392
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 49
|b 29
|c 12
|h e2207392
|