|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM346383439 |
003 |
DE-627 |
005 |
20231226031318.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202206196
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1154.xml
|
035 |
|
|
|a (DE-627)NLM346383439
|
035 |
|
|
|a (NLM)36121643
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Zhiyi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Approaching the Intrinsic Threshold Breakdown Voltage and Ultrahigh Gain in a Graphite/InSe Schottky Photodetector
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.11.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Realizing both ultralow breakdown voltage and ultrahigh gain is one of the major challenges in the development of high-performance avalanche photodetector. Here, it is reported that an ultrahigh avalanche gain of 3 × 105 can be realized in the graphite/InSe Schottky photodetector at a breakdown voltage down to 5.5 V. Remarkably, the threshold breakdown voltage can be further reduced down to 1.8 V by raising the operating temperature, approaching the theoretical limit of 1.5 E g \[{{\cal E}_{\bf g}}\] /e, with E g ${{\cal E}_{\bf g}}$ the bandgap of semiconductor. A 2D impact ionization model is developed and it is uncovered that observation of high gain at low breakdown voltage arises from reduced dimensionality of electron-phonon scattering in the layered InSe flake. These findings open up a promising avenue for developing novel weak-light detectors with low energy consumption and high sensitivity
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a InSe
|
650 |
|
4 |
|a avalanche photodiodes
|
650 |
|
4 |
|a layered materials
|
650 |
|
4 |
|a van der Waals (vdW) Schottky junctions
|
700 |
1 |
|
|a Cheng, Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lim, Jeremy
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Anyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lyu, Lingyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Tianjun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Shuang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Zhu-An
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Qingyun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ang, Lay Kee
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ang, Yee Sin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Shi-Jun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Miao, Feng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 47 vom: 19. Nov., Seite e2206196
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:47
|g day:19
|g month:11
|g pages:e2206196
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202206196
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 47
|b 19
|c 11
|h e2206196
|