Explainability in Graph Neural Networks : A Taxonomic Survey

Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain predictions, giving rise to the...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 19. Mai, Seite 5782-5799
Auteur principal: Yuan, Hao (Auteur)
Autres auteurs: Yu, Haiyang, Gui, Shurui, Ji, Shuiwang
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM345806921
003 DE-627
005 20250303191445.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3204236  |2 doi 
028 5 2 |a pubmed25n1152.xml 
035 |a (DE-627)NLM345806921 
035 |a (NLM)36063508 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Hao  |e verfasserin  |4 aut 
245 1 0 |a Explainability in Graph Neural Networks  |b A Taxonomic Survey 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.04.2023 
500 |a Date Revised 06.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we provide a testbed for GNN explainability, including datasets, common algorithms and evaluation metrics. Furthermore, we conduct comprehensive experiments to compare and analyze the performance of many techniques. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Yu, Haiyang  |e verfasserin  |4 aut 
700 1 |a Gui, Shurui  |e verfasserin  |4 aut 
700 1 |a Ji, Shuiwang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 5 vom: 19. Mai, Seite 5782-5799  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:5  |g day:19  |g month:05  |g pages:5782-5799 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3204236  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 5  |b 19  |c 05  |h 5782-5799