Explainability in Graph Neural Networks : A Taxonomic Survey
Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain predictions, giving rise to the...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 19. Mai, Seite 5782-5799
|
1. Verfasser: |
Yuan, Hao
(VerfasserIn) |
Weitere Verfasser: |
Yu, Haiyang,
Gui, Shurui,
Ji, Shuiwang |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article
Research Support, U.S. Gov't, Non-P.H.S. |