Explainability in Graph Neural Networks : A Taxonomic Survey

Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain predictions, giving rise to the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 19. Mai, Seite 5782-5799
1. Verfasser: Yuan, Hao (VerfasserIn)
Weitere Verfasser: Yu, Haiyang, Gui, Shurui, Ji, Shuiwang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.