Many-Body Molecular Interactions in a Memristor

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 37 vom: 14. Sept., Seite e2204551
1. Verfasser: Rath, Santi P (VerfasserIn)
Weitere Verfasser: Thompson, Damien, Goswami, Sreebrata, Goswami, Sreetosh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article counterions cryogenic transport many-body molecular interactions memristors redox
LEADER 01000naa a22002652 4500
001 NLM345606086
003 DE-627
005 20231226025438.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202204551  |2 doi 
028 5 2 |a pubmed24n1151.xml 
035 |a (DE-627)NLM345606086 
035 |a (NLM)36043246 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rath, Santi P  |e verfasserin  |4 aut 
245 1 0 |a Many-Body Molecular Interactions in a Memristor 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Electronic transitions in molecular-circuit elements hinge on complex interactions between molecules and ions, offering a multidimensional parameter space to embed, access, and optimize material functionalities for target-specific applications. This opportunity is not cultivated in molecular memristors because their low-temperature charge transport, which is a route to decipher molecular many-body interactions, is unexplored. To address this, robust, temperature-resilient molecular memristors based on a Ru complex of an azo aromatic ligand are designed, and current-voltage sweep measurements from room temperature down to 2 K with different cooling protocols are performed. By freezing out or activating different components of supramolecular dynamics, the local Coulombic interactions between the molecules and counterions that affect the electronic transport can be controlled. Operating conditions are designed where functionalities spanning bipolar, unipolar, nonvolatile, and volatile memristors with sharp as well as gradual analog transitions are captured within a single device. A mathematical design space evolves, thereof comprising 36 tuneable parameters in which all possible steady-state functional variations in a memristor characteristic can be attainable. This enables a deterministic design route to engineer neuromorphic devices with unprecedented control over the transformation characteristics governing their functional flexibility and tunability 
650 4 |a Journal Article 
650 4 |a counterions 
650 4 |a cryogenic transport 
650 4 |a many-body molecular interactions 
650 4 |a memristors 
650 4 |a redox 
700 1 |a Thompson, Damien  |e verfasserin  |4 aut 
700 1 |a Goswami, Sreebrata  |e verfasserin  |4 aut 
700 1 |a Goswami, Sreetosh  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 37 vom: 14. Sept., Seite e2204551  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:37  |g day:14  |g month:09  |g pages:e2204551 
856 4 0 |u http://dx.doi.org/10.1002/adma.202204551  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 37  |b 14  |c 09  |h e2204551