Many-Body Molecular Interactions in a Memristor

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 37 vom: 14. Sept., Seite e2204551
1. Verfasser: Rath, Santi P (VerfasserIn)
Weitere Verfasser: Thompson, Damien, Goswami, Sreebrata, Goswami, Sreetosh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article counterions cryogenic transport many-body molecular interactions memristors redox
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Electronic transitions in molecular-circuit elements hinge on complex interactions between molecules and ions, offering a multidimensional parameter space to embed, access, and optimize material functionalities for target-specific applications. This opportunity is not cultivated in molecular memristors because their low-temperature charge transport, which is a route to decipher molecular many-body interactions, is unexplored. To address this, robust, temperature-resilient molecular memristors based on a Ru complex of an azo aromatic ligand are designed, and current-voltage sweep measurements from room temperature down to 2 K with different cooling protocols are performed. By freezing out or activating different components of supramolecular dynamics, the local Coulombic interactions between the molecules and counterions that affect the electronic transport can be controlled. Operating conditions are designed where functionalities spanning bipolar, unipolar, nonvolatile, and volatile memristors with sharp as well as gradual analog transitions are captured within a single device. A mathematical design space evolves, thereof comprising 36 tuneable parameters in which all possible steady-state functional variations in a memristor characteristic can be attainable. This enables a deterministic design route to engineer neuromorphic devices with unprecedented control over the transformation characteristics governing their functional flexibility and tunability
Beschreibung:Date Revised 14.09.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202204551