Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands

© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 28(2022), 22 vom: 29. Nov., Seite 6752-6770
1. Verfasser: Kwon, Min Jung (VerfasserIn)
Weitere Verfasser: Ballantyne, Ashley, Ciais, Philippe, Qiu, Chunjing, Salmon, Elodie, Raoult, Nina, Guenet, Bertrand, Göckede, Mathias, Euskirchen, Eugénie S, Nykänen, Hannu, Schuur, Edward A G, Turetsky, Merritt R, Dieleman, Catherine M, Kane, Evan S, Zona, Donatella
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article carbon flux carbon stock drainage high latitude land surface model manipulation experiment permafrost thaw Greenhouse Gases Soil mehr... Carbon Dioxide 142M471B3J Carbon 7440-44-0 Methane OP0UW79H66
LEADER 01000naa a22002652 4500
001 NLM345572289
003 DE-627
005 20231226025349.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16394  |2 doi 
028 5 2 |a pubmed24n1151.xml 
035 |a (DE-627)NLM345572289 
035 |a (NLM)36039832 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kwon, Min Jung  |e verfasserin  |4 aut 
245 1 0 |a Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.10.2022 
500 |a Date Revised 07.01.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m-2  year-1 ; including 6 ± 7 g C-CH4 m-2  year-1 emission). We found, however, that lowering the WT by 10 cm reduced the CO2 sink by 13 ± 15 g C m-2  year-1 and decreased CH4 emission by 4 ± 4 g CH4 m-2  year-1 , thus accumulating less C over 100 years (0.2 ± 0.2 kg C m-2 ). Yet, the reduced emission of CH4 , which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO2-eq  m-2  year-1 . Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost >2 kg C m-2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario 
650 4 |a Journal Article 
650 4 |a carbon flux 
650 4 |a carbon stock 
650 4 |a drainage 
650 4 |a high latitude 
650 4 |a land surface model 
650 4 |a manipulation experiment 
650 4 |a permafrost thaw 
650 7 |a Greenhouse Gases  |2 NLM 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Methane  |2 NLM 
650 7 |a OP0UW79H66  |2 NLM 
700 1 |a Ballantyne, Ashley  |e verfasserin  |4 aut 
700 1 |a Ciais, Philippe  |e verfasserin  |4 aut 
700 1 |a Qiu, Chunjing  |e verfasserin  |4 aut 
700 1 |a Salmon, Elodie  |e verfasserin  |4 aut 
700 1 |a Raoult, Nina  |e verfasserin  |4 aut 
700 1 |a Guenet, Bertrand  |e verfasserin  |4 aut 
700 1 |a Göckede, Mathias  |e verfasserin  |4 aut 
700 1 |a Euskirchen, Eugénie S  |e verfasserin  |4 aut 
700 1 |a Nykänen, Hannu  |e verfasserin  |4 aut 
700 1 |a Schuur, Edward A G  |e verfasserin  |4 aut 
700 1 |a Turetsky, Merritt R  |e verfasserin  |4 aut 
700 1 |a Dieleman, Catherine M  |e verfasserin  |4 aut 
700 1 |a Kane, Evan S  |e verfasserin  |4 aut 
700 1 |a Zona, Donatella  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 28(2022), 22 vom: 29. Nov., Seite 6752-6770  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:22  |g day:29  |g month:11  |g pages:6752-6770 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16394  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 22  |b 29  |c 11  |h 6752-6770