Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands
© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Veröffentlicht in: | Global change biology. - 1999. - 28(2022), 22 vom: 29. Nov., Seite 6752-6770 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Global change biology |
Schlagworte: | Journal Article carbon flux carbon stock drainage high latitude land surface model manipulation experiment permafrost thaw Greenhouse Gases Soil mehr... |
Zusammenfassung: | © 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m-2 year-1 ; including 6 ± 7 g C-CH4 m-2 year-1 emission). We found, however, that lowering the WT by 10 cm reduced the CO2 sink by 13 ± 15 g C m-2 year-1 and decreased CH4 emission by 4 ± 4 g CH4 m-2 year-1 , thus accumulating less C over 100 years (0.2 ± 0.2 kg C m-2 ). Yet, the reduced emission of CH4 , which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO2-eq m-2 year-1 . Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost >2 kg C m-2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario |
---|---|
Beschreibung: | Date Completed 18.10.2022 Date Revised 07.01.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1365-2486 |
DOI: | 10.1111/gcb.16394 |