Readily Accessible Metallic Micro-Island Arrays for High-Performance Metal Oxide Thin-Film Transistors
© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 45 vom: 15. Nov., Seite e2205871 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article amorphous indium-gallium-zinc-oxide metal oxide semiconductors metallic capping layers technology computer-aided design simulations thin-film transistors |
Zusammenfassung: | © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. Thin-film transistors using metal oxide semiconductors are essential in many unconventional electronic devices. Nevertheless, further advances will be necessary to broaden their technological appeal. Here, a new strategy is reported to achieve high-performance solution-processed metal oxide thin-film transistors (MOTFTs) by introducing a metallic micro-island array (M-MIA) on top of the MO back channel, where the MO is a-IGZO (amorphous indium-gallium-zinc-oxide). Here Al-MIAs are fabricated using honeycomb cinnamate cellulose films, created by a scalable breath-figure method, as a shadow mask. For IGZO TFTs, the electron mobility (µe ) increases from ≈3.6 cm2 V-1 s-1 to near 15.6 cm2 V-1 s-1 for optimal Al-MIA dimension/coverage of 1.25 µm/51%. The Al-MIA IGZO TFT performance is superior to that of controls using compact/planar Al layers (Al-PL TFTs) and Au-MIAs with the same channel coverage. Kelvin probe force microscopy and technology computer-aided design simulations reveal that charge transfer occurs between the Al and the IGZO channel which is optimized for specific Al-MIA dimensions/surface channel coverages. Furthermore, such Al-MIA IGZO TFTs with a high-k fluoride-doped alumina dielectric exhibit a maximum µe of >50.2 cm2 V-1 s-1 . This is the first demonstration of a micro-structured MO semiconductor heterojunction with submicrometer resolution metallic arrays for enhanced transistor performance and broad applicability to other devices |
---|---|
Beschreibung: | Date Revised 10.11.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202205871 |