PS 2 F : Polarized Spiral Point Spread Function for Single-Shot 3D Sensing

We propose a compact snapshot monocular depth estimation technique that relies on an engineered point spread function (PSF). Traditional approaches used in microscopic super-resolution imaging such as the Double-Helix PSF (DHPSF) are ill-suited for scenes that are more complex than a sparse set of p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2022) vom: 29. Aug.
1. Verfasser: Ghanekar, Bhargav (VerfasserIn)
Weitere Verfasser: Saragadam, Vishwanath, Mehra, Dushyant, Gustavsson, Anna-Karin, Sankaranarayanan, Aswin C, Veeraraghavan, Ashok
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM345548833
003 DE-627
005 20240216232228.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3202511  |2 doi 
028 5 2 |a pubmed24n1295.xml 
035 |a (DE-627)NLM345548833 
035 |a (NLM)36037460 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ghanekar, Bhargav  |e verfasserin  |4 aut 
245 1 0 |a PS 2 F  |b Polarized Spiral Point Spread Function for Single-Shot 3D Sensing 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a We propose a compact snapshot monocular depth estimation technique that relies on an engineered point spread function (PSF). Traditional approaches used in microscopic super-resolution imaging such as the Double-Helix PSF (DHPSF) are ill-suited for scenes that are more complex than a sparse set of point light sources. We show, using the Cramér-Rao lower bound, that separating the two lobes of the DHPSF and thereby capturing two separate images leads to a dramatic increase in depth accuracy. A special property of the phase mask used for generating the DHPSF is that a separation of the phase mask into two halves leads to a spatial separation of the two lobes. We leverage this property to build a compact polarization-based optical setup, where we place two orthogonal linear polarizers on each half of the DHPSF phase mask and then capture the resulting image with a polarization-sensitive camera. Results from simulations and a lab prototype demonstrate that our technique achieves up to 50% lower depth error compared to state-of-the-art designs including the DHPSF and the Tetrapod PSF, with little to no loss in spatial resolution 
650 4 |a Journal Article 
700 1 |a Saragadam, Vishwanath  |e verfasserin  |4 aut 
700 1 |a Mehra, Dushyant  |e verfasserin  |4 aut 
700 1 |a Gustavsson, Anna-Karin  |e verfasserin  |4 aut 
700 1 |a Sankaranarayanan, Aswin C  |e verfasserin  |4 aut 
700 1 |a Veeraraghavan, Ashok  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2022) vom: 29. Aug.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2022  |g day:29  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3202511  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2022  |b 29  |c 08