|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM345548833 |
003 |
DE-627 |
005 |
20240216232228.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2022.3202511
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1295.xml
|
035 |
|
|
|a (DE-627)NLM345548833
|
035 |
|
|
|a (NLM)36037460
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ghanekar, Bhargav
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a PS 2 F
|b Polarized Spiral Point Spread Function for Single-Shot 3D Sensing
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 16.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a We propose a compact snapshot monocular depth estimation technique that relies on an engineered point spread function (PSF). Traditional approaches used in microscopic super-resolution imaging such as the Double-Helix PSF (DHPSF) are ill-suited for scenes that are more complex than a sparse set of point light sources. We show, using the Cramér-Rao lower bound, that separating the two lobes of the DHPSF and thereby capturing two separate images leads to a dramatic increase in depth accuracy. A special property of the phase mask used for generating the DHPSF is that a separation of the phase mask into two halves leads to a spatial separation of the two lobes. We leverage this property to build a compact polarization-based optical setup, where we place two orthogonal linear polarizers on each half of the DHPSF phase mask and then capture the resulting image with a polarization-sensitive camera. Results from simulations and a lab prototype demonstrate that our technique achieves up to 50% lower depth error compared to state-of-the-art designs including the DHPSF and the Tetrapod PSF, with little to no loss in spatial resolution
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Saragadam, Vishwanath
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mehra, Dushyant
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gustavsson, Anna-Karin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sankaranarayanan, Aswin C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Veeraraghavan, Ashok
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g PP(2022) vom: 29. Aug.
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:PP
|g year:2022
|g day:29
|g month:08
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2022.3202511
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d PP
|j 2022
|b 29
|c 08
|