PS 2 F : Polarized Spiral Point Spread Function for Single-Shot 3D Sensing
We propose a compact snapshot monocular depth estimation technique that relies on an engineered point spread function (PSF). Traditional approaches used in microscopic super-resolution imaging such as the Double-Helix PSF (DHPSF) are ill-suited for scenes that are more complex than a sparse set of p...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2022) vom: 29. Aug. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | We propose a compact snapshot monocular depth estimation technique that relies on an engineered point spread function (PSF). Traditional approaches used in microscopic super-resolution imaging such as the Double-Helix PSF (DHPSF) are ill-suited for scenes that are more complex than a sparse set of point light sources. We show, using the Cramér-Rao lower bound, that separating the two lobes of the DHPSF and thereby capturing two separate images leads to a dramatic increase in depth accuracy. A special property of the phase mask used for generating the DHPSF is that a separation of the phase mask into two halves leads to a spatial separation of the two lobes. We leverage this property to build a compact polarization-based optical setup, where we place two orthogonal linear polarizers on each half of the DHPSF phase mask and then capture the resulting image with a polarization-sensitive camera. Results from simulations and a lab prototype demonstrate that our technique achieves up to 50% lower depth error compared to state-of-the-art designs including the DHPSF and the Tetrapod PSF, with little to no loss in spatial resolution |
---|---|
Beschreibung: | Date Revised 16.02.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2022.3202511 |