Conformer-RL : A deep reinforcement learning library for conformer generation

© 2022 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 43(2022), 27 vom: 15. Okt., Seite 1880-1886
1. Verfasser: Jiang, Runxuan (VerfasserIn)
Weitere Verfasser: Gogineni, Tarun, Kammeraad, Joshua, He, Yifei, Tewari, Ambuj, Zimmerman, Paul M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. conformer generation graph neural network machine learning reinforcement learning Polymers
LEADER 01000naa a22002652 4500
001 NLM34519229X
003 DE-627
005 20231226024515.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26984  |2 doi 
028 5 2 |a pubmed24n1150.xml 
035 |a (DE-627)NLM34519229X 
035 |a (NLM)36000759 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Runxuan  |e verfasserin  |4 aut 
245 1 0 |a Conformer-RL  |b A deep reinforcement learning library for conformer generation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.09.2022 
500 |a Date Revised 19.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a Conformer-RL is an open-source Python package for applying deep reinforcement learning (RL) to the task of generating a diverse set of low-energy conformations for a single molecule. The library features a simple interface to train a deep RL conformer generation model on any covalently bonded molecule or polymer, including most drug-like molecules. Under the hood, it implements state-of-the-art RL algorithms and graph neural network architectures tuned specifically for molecular structures. Conformer-RL is also a platform for researching new algorithms and neural network architectures for conformer generation, as the library contains modular class interfaces for RL environments and agents, allowing users to easily swap components with their own implementations. Additionally, it comes with tools to visualize and save generated conformers for further analysis. Conformer-RL is well-tested and thoroughly documented with tutorials for each of the functionalities mentioned above, and is available on PyPi and Github: https://github.com/ZimmermanGroup/conformer-rl 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a conformer generation 
650 4 |a graph neural network 
650 4 |a machine learning 
650 4 |a reinforcement learning 
650 7 |a Polymers  |2 NLM 
700 1 |a Gogineni, Tarun  |e verfasserin  |4 aut 
700 1 |a Kammeraad, Joshua  |e verfasserin  |4 aut 
700 1 |a He, Yifei  |e verfasserin  |4 aut 
700 1 |a Tewari, Ambuj  |e verfasserin  |4 aut 
700 1 |a Zimmerman, Paul M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 43(2022), 27 vom: 15. Okt., Seite 1880-1886  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:43  |g year:2022  |g number:27  |g day:15  |g month:10  |g pages:1880-1886 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26984  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2022  |e 27  |b 15  |c 10  |h 1880-1886