|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM344825787 |
003 |
DE-627 |
005 |
20231226023650.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202203879
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1149.xml
|
035 |
|
|
|a (DE-627)NLM344825787
|
035 |
|
|
|a (NLM)35963842
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Massuyeau, Florian
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Perovskite or Not Perovskite? A Deep-Learning Approach to Automatically Identify New Hybrid Perovskites from X-ray Diffraction Patterns
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 14.10.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Determining the crystal structure is a critical step in the discovery of new functional materials. This process is time consuming and requires extensive human expertise in crystallography. Here, a machine-learning-based approach is developed, which allows it to be determined automatically if an unknown material is of perovskite type from powder X-ray diffraction. After training a deep-learning model on a dataset of known compounds, the structure types of new unknown compounds can be predicted using their experimental powder X-ray diffraction patterns. This strategy is used to distinguish perovskite-type materials in a series of new hybrid lead halides. After validation, this approach is shown to accurately identify perovskites (accuracy of 92% with convolutional neural network). From the identification of the key features of the patterns used to discriminate perovskites versus nonperovskites, crystallographers can learn how to quickly identify low-dimensional perovskites from X-ray diffraction patterns
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a X-ray diffraction
|
650 |
|
4 |
|a deep learning
|
650 |
|
4 |
|a hybrid perovskites
|
700 |
1 |
|
|a Broux, Thibault
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Coulet, Florent
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Demessence, Aude
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mesbah, Adel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gautier, Romain
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 41 vom: 10. Okt., Seite e2203879
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:41
|g day:10
|g month:10
|g pages:e2203879
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202203879
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 41
|b 10
|c 10
|h e2203879
|