Perovskite or Not Perovskite? A Deep-Learning Approach to Automatically Identify New Hybrid Perovskites from X-ray Diffraction Patterns

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 41 vom: 10. Okt., Seite e2203879
1. Verfasser: Massuyeau, Florian (VerfasserIn)
Weitere Verfasser: Broux, Thibault, Coulet, Florent, Demessence, Aude, Mesbah, Adel, Gautier, Romain
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article X-ray diffraction deep learning hybrid perovskites
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Determining the crystal structure is a critical step in the discovery of new functional materials. This process is time consuming and requires extensive human expertise in crystallography. Here, a machine-learning-based approach is developed, which allows it to be determined automatically if an unknown material is of perovskite type from powder X-ray diffraction. After training a deep-learning model on a dataset of known compounds, the structure types of new unknown compounds can be predicted using their experimental powder X-ray diffraction patterns. This strategy is used to distinguish perovskite-type materials in a series of new hybrid lead halides. After validation, this approach is shown to accurately identify perovskites (accuracy of 92% with convolutional neural network). From the identification of the key features of the patterns used to discriminate perovskites versus nonperovskites, crystallographers can learn how to quickly identify low-dimensional perovskites from X-ray diffraction patterns
Beschreibung:Date Revised 14.10.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202203879