Flat-Zigzag Interface Design of Chalcogenide Heterostructure toward Ultralow Volume Expansion for High-Performance Potassium Storage

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 39 vom: 07. Sept., Seite e2203485
1. Verfasser: Pan, Qingguang (VerfasserIn)
Weitere Verfasser: Tong, Zhaopeng, Su, Yuanqiang, Zheng, Yongping, Shang, Lin, Tang, Yongbing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article MoS2/Bi2S3 anodes dual-ion batteries flat-zigzag stacking heterostructure interfaces potassium-ion batteries ultralow expansion
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Heterostructure construction of layered metal chalcogenides can boost their alkali-metal storage performance, where the charge transfer kinetics can be promoted by the built-in electric fields. However, these heterostructures usually undergo interface separation due to severe layer expansion, especially for large-size potassium accommodation, resulting in the deconstruction of heterostructures and battery performance fading. Herein, first a stable interface design strategy where two metal chalcogenides with totally different layer-morphologies are stacked to form large K+ transport channels, rendering ultralow interlayer expansion, is presented. As a proof of concept, the flat-zigzag MoS2 /Bi2 S3 heterostructures stacked with zigzag-morphology Bi2 S3 and flat-morphology MoS2 present an ultralow expansion ratio (1.98%) versus MoS2 (9.66%) and Bi2 S3 (9.61%), which deliver an ultrahigh potassium storage capacity of above 600 mAh g-1 and capacity retention of 76% after 500 cycles, together with the built-in electric field of heterostructures. Once the heterostructures are used as an anode for potassium-based dual-ion batteries (K-DIBs), it achieves a superior full-cell capacity of ≈166 mAh g-1 with a capacity retention of 71% after 400 cycles, which is an outstanding performance among the reported K-DIBs. This proposed interface stacking strategy may offer a new way toward stable heterostructure design for metal ions storage and transport applications
Beschreibung:Date Revised 28.09.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202203485