ppdx : Automated modeling of protein-protein interaction descriptors for use with machine learning

© 2022 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 43(2022), 25 vom: 30. Sept., Seite 1747-1757
1. Verfasser: Conti, Simone (VerfasserIn)
Weitere Verfasser: Ovchinnikov, Victor, Karplus, Martin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't binding affinity machine learning protein interaction descriptors protein-protein interactions scoring functions Proteins
LEADER 01000naa a22002652 4500
001 NLM34449828X
003 DE-627
005 20231226022917.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26974  |2 doi 
028 5 2 |a pubmed24n1148.xml 
035 |a (DE-627)NLM34449828X 
035 |a (NLM)35930347 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Conti, Simone  |e verfasserin  |4 aut 
245 1 0 |a ppdx  |b Automated modeling of protein-protein interaction descriptors for use with machine learning 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.08.2022 
500 |a Date Revised 19.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 Wiley Periodicals LLC. 
520 |a This paper describes ppdx, a python workflow tool that combines protein sequence alignment, homology modeling, and structural refinement, to compute a broad array of descriptors for characterizing protein-protein interactions. The descriptors can be used to predict various properties of interest, such as protein-protein binding affinities, or inhibitory concentrations (IC50 ), using approaches that range from simple regression to more complex machine learning models. The software is highly modular. It supports different protocols for generating structures, and 95 descriptors can be currently computed. More protocols and descriptors can be easily added. The implementation is highly parallel and can fully exploit the available cores in a single workstation, or multiple nodes on a supercomputer, allowing many systems to be analyzed simultaneously. As an illustrative application, ppdx is used to parametrize a model that predicts the IC50 of a set of antigens and a class of antibodies directed to the influenza hemagglutinin stalk 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a binding affinity 
650 4 |a machine learning 
650 4 |a protein interaction descriptors 
650 4 |a protein-protein interactions 
650 4 |a scoring functions 
650 7 |a Proteins  |2 NLM 
700 1 |a Ovchinnikov, Victor  |e verfasserin  |4 aut 
700 1 |a Karplus, Martin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 43(2022), 25 vom: 30. Sept., Seite 1747-1757  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:43  |g year:2022  |g number:25  |g day:30  |g month:09  |g pages:1747-1757 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26974  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2022  |e 25  |b 30  |c 09  |h 1747-1757