|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM344489655 |
003 |
DE-627 |
005 |
20231226022905.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202206425
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1148.xml
|
035 |
|
|
|a (DE-627)NLM344489655
|
035 |
|
|
|a (NLM)35929436
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Puthirath, Anand B
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Piezoelectricity across 2D Phase Boundaries
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 28.09.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Piezoelectricity in low-dimensional materials and metal-semiconductor junctions has attracted recent attention. Herein, a 2D in-plane metal-semiconductor junction made of multilayer 2H and 1T' phases of molybdenum(IV) telluride (MoTe2 ) is investigated. Strong piezoelectric response is observed using piezoresponse force microscopy at the 2H-1T' junction, despite that the multilayers of each individual phase are weakly piezoelectric. The experimental results and density functional theory calculations suggest that the amplified piezoelectric response observed at the junction is due to the charge transfer across the semiconducting and metallic junctions resulting in the formation of dipoles and excess charge density, allowing the engineering of piezoelectric response in atomically thin materials
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D materials
|
650 |
|
4 |
|a Schottky junctions
|
650 |
|
4 |
|a in-plane homojunctions
|
650 |
|
4 |
|a molybdenum(IV) telluride
|
650 |
|
4 |
|a piezoelectricity
|
700 |
1 |
|
|a Zhang, Xiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Krishnamoorthy, Aravind
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Rui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Samghabadi, Farnaz Safi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Moore, David C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lai, Jiawei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Tianyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sanchez, David E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Fu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Glavin, Nicholas R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Litvinov, Dmitri
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Vajtai, Robert
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Swaminathan, Venkataraman
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Terrones, Mauricio
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Hanyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Vashishta, Priya
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ajayan, Pulickel M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 39 vom: 30. Sept., Seite e2206425
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:39
|g day:30
|g month:09
|g pages:e2206425
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202206425
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 39
|b 30
|c 09
|h e2206425
|