One-Phototransistor-One-Memristor Array with High-Linearity Light-Tunable Weight for Optic Neuromorphic Computing

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 37 vom: 01. Sept., Seite e2204844
1. Verfasser: Dang, Bingjie (VerfasserIn)
Weitere Verfasser: Liu, Keqin, Wu, Xulei, Yang, Zhen, Xu, Liying, Yang, Yuchao, Huang, Ru
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article in-sensor computing memristors neuromorphic computing optic pattern recognition
LEADER 01000caa a22002652c 4500
001 NLM344368599
003 DE-627
005 20250303160207.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202204844  |2 doi 
028 5 2 |a pubmed25n1147.xml 
035 |a (DE-627)NLM344368599 
035 |a (NLM)35917248 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dang, Bingjie  |e verfasserin  |4 aut 
245 1 0 |a One-Phototransistor-One-Memristor Array with High-Linearity Light-Tunable Weight for Optic Neuromorphic Computing 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a The recent advances in optic neuromorphic devices have led to a subsequent rise in use for construction of energy-efficient artificial-vision systems. The widespread use can be attributed to their ability to capture, store, and process visual information from the environment. The primary limitations of existing optic neuromorphic devices include nonlinear weight updates, cross-talk issues, and silicon process incompatibility. In this study, a highly linear, light-tunable, cross-talk-free, and silicon-compatible one-phototransistor-one-memristor (1PT1R) optic memristor is experimentally demonstrated for the implementation of an optic artificial neural network (OANN). For optic image recognition in the experiment, an OANN is constructed using a 16 × 3 1PT1R memristor array, and it is trained on an online platform. The model yields an accuracy of 99.3% after only ten training epochs. The 1PT1R memristor, which shows good performance, demonstrates its ability as an excellent hardware solution for highly efficient optic neuromorphic and edge computing 
650 4 |a Journal Article 
650 4 |a in-sensor computing 
650 4 |a memristors 
650 4 |a neuromorphic computing 
650 4 |a optic pattern recognition 
700 1 |a Liu, Keqin  |e verfasserin  |4 aut 
700 1 |a Wu, Xulei  |e verfasserin  |4 aut 
700 1 |a Yang, Zhen  |e verfasserin  |4 aut 
700 1 |a Xu, Liying  |e verfasserin  |4 aut 
700 1 |a Yang, Yuchao  |e verfasserin  |4 aut 
700 1 |a Huang, Ru  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 37 vom: 01. Sept., Seite e2204844  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:35  |g year:2023  |g number:37  |g day:01  |g month:09  |g pages:e2204844 
856 4 0 |u http://dx.doi.org/10.1002/adma.202204844  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 37  |b 01  |c 09  |h e2204844