|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM344358194 |
003 |
DE-627 |
005 |
20231226022602.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202204835
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1147.xml
|
035 |
|
|
|a (DE-627)NLM344358194
|
035 |
|
|
|a (NLM)35916198
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yang, Hua
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Building a Self-Adaptive Protective Layer on Ni-Rich Layered Cathodes to Enhance the Cycle Stability of Lithium-Ion Batteries
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.09.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Layered Ni-rich lithium transition metal oxides are promising battery cathodes due to their high specific capacity, but their poor cycling stability due to intergranular cracks in secondary particles restricts their practical applications. Surface engineering is an effective strategy for improving a cathode's cycling stability, but most reported surface coatings cannot adapt to the dynamic volume changes of cathodes. Herein, a self-adaptive polymer (polyrotaxane-co-poly(acrylic acid)) interfacial layer is built on LiNi0.6 Co0.2 Mn0.2 O2 . The polymer layer with a slide-ring structure exhibits high toughness and can withstand the stress caused by particle volume changes, which can prevent the cracking of particles. In addition, the slide-ring polymer acts as a physicochemical barrier that suppresses surface side reactions and alleviates the dissolution of transition metallic ions, which ensures stable cycling performance. Thus, the as-prepared cathode shows significantly improved long-term cycling stability in situations in which cracks may easily occur, especially under high-rate, high-voltage, and high-temperature conditions
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a cathodes
|
650 |
|
4 |
|a high stability
|
650 |
|
4 |
|a intergranular cracking
|
650 |
|
4 |
|a lithium-ion batteries
|
650 |
|
4 |
|a protective layers
|
700 |
1 |
|
|a Gao, Rui-Min
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xu-Dong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Jia-Yan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Meng, Xin-Hai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Zhuo-Ya
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Fei-Fei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ye, Huan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 38 vom: 17. Sept., Seite e2204835
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:38
|g day:17
|g month:09
|g pages:e2204835
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202204835
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 38
|b 17
|c 09
|h e2204835
|