Building a Self-Adaptive Protective Layer on Ni-Rich Layered Cathodes to Enhance the Cycle Stability of Lithium-Ion Batteries

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 38 vom: 17. Sept., Seite e2204835
1. Verfasser: Yang, Hua (VerfasserIn)
Weitere Verfasser: Gao, Rui-Min, Zhang, Xu-Dong, Liang, Jia-Yan, Meng, Xin-Hai, Lu, Zhuo-Ya, Cao, Fei-Fei, Ye, Huan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article cathodes high stability intergranular cracking lithium-ion batteries protective layers
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Layered Ni-rich lithium transition metal oxides are promising battery cathodes due to their high specific capacity, but their poor cycling stability due to intergranular cracks in secondary particles restricts their practical applications. Surface engineering is an effective strategy for improving a cathode's cycling stability, but most reported surface coatings cannot adapt to the dynamic volume changes of cathodes. Herein, a self-adaptive polymer (polyrotaxane-co-poly(acrylic acid)) interfacial layer is built on LiNi0.6 Co0.2 Mn0.2 O2 . The polymer layer with a slide-ring structure exhibits high toughness and can withstand the stress caused by particle volume changes, which can prevent the cracking of particles. In addition, the slide-ring polymer acts as a physicochemical barrier that suppresses surface side reactions and alleviates the dissolution of transition metallic ions, which ensures stable cycling performance. Thus, the as-prepared cathode shows significantly improved long-term cycling stability in situations in which cracks may easily occur, especially under high-rate, high-voltage, and high-temperature conditions
Beschreibung:Date Revised 27.09.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202204835