Why it is Unfortunate that Linear Machine Learning "Works" so well in Electromechanical Switching of Ferroelectric Thin Films

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 47 vom: 15. Nov., Seite e2202814
1. Verfasser: Qin, Shuyu (VerfasserIn)
Weitere Verfasser: Guo, Yichen, Kaliyev, Alibek T, Agar, Joshua C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article deep learning dimensionality reduction ferroelectric switching machine learning multimodal hyperspectral imaging unsupervised learning
LEADER 01000naa a22002652 4500
001 NLM344257126
003 DE-627
005 20231226022338.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202202814  |2 doi 
028 5 2 |a pubmed24n1147.xml 
035 |a (DE-627)NLM344257126 
035 |a (NLM)35906007 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qin, Shuyu  |e verfasserin  |4 aut 
245 1 0 |a Why it is Unfortunate that Linear Machine Learning "Works" so well in Electromechanical Switching of Ferroelectric Thin Films 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Machine learning (ML) is relied on for materials spectroscopy. It is challenging to make ML models fail because statistical correlations can mimic the physics without causality. Here, using a benchmark band-excitation piezoresponse force microscopy polarization spectroscopy (BEPS) dataset the pitfalls of the so-called "better", "faster", and "less-biased" ML of electromechanical switching are demonstrated and overcome. Using a toy and real experimental dataset, it is demonstrated how linear nontemporal ML methods result in physically reasonable embedding (eigenvalues) while producing nonsensical eigenvectors and generated spectra, promoting misleading interpretations. A new method of unsupervised multimodal hyperspectral analysis of BEPS is demonstrated using long-short-term memory (LSTM) β-variational autoencoders (β-VAEs) . By including LSTM neurons, the ordinal nature of ferroelectric switching is considered. To improve the interpretability of the latent space, a variational Kullback-Leibler-divergency regularization is imposed . Finally, regularization scheduling of β as a disentanglement metric is leveraged to reduce user bias. Combining these experiment-inspired modifications enables the automated detection of ferroelectric switching mechanisms, including a complex two-step, three-state one. Ultimately, this work provides a robust ML method for the rapid discovery of electromechanical switching mechanisms in ferroelectrics and is applicable to other multimodal hyperspectral materials spectroscopies 
650 4 |a Journal Article 
650 4 |a deep learning 
650 4 |a dimensionality reduction 
650 4 |a ferroelectric switching 
650 4 |a machine learning 
650 4 |a multimodal hyperspectral imaging 
650 4 |a unsupervised learning 
700 1 |a Guo, Yichen  |e verfasserin  |4 aut 
700 1 |a Kaliyev, Alibek T  |e verfasserin  |4 aut 
700 1 |a Agar, Joshua C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 47 vom: 15. Nov., Seite e2202814  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:47  |g day:15  |g month:11  |g pages:e2202814 
856 4 0 |u http://dx.doi.org/10.1002/adma.202202814  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 47  |b 15  |c 11  |h e2202814