|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM344257126 |
003 |
DE-627 |
005 |
20231226022338.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202202814
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1147.xml
|
035 |
|
|
|a (DE-627)NLM344257126
|
035 |
|
|
|a (NLM)35906007
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Qin, Shuyu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Why it is Unfortunate that Linear Machine Learning "Works" so well in Electromechanical Switching of Ferroelectric Thin Films
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.11.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Machine learning (ML) is relied on for materials spectroscopy. It is challenging to make ML models fail because statistical correlations can mimic the physics without causality. Here, using a benchmark band-excitation piezoresponse force microscopy polarization spectroscopy (BEPS) dataset the pitfalls of the so-called "better", "faster", and "less-biased" ML of electromechanical switching are demonstrated and overcome. Using a toy and real experimental dataset, it is demonstrated how linear nontemporal ML methods result in physically reasonable embedding (eigenvalues) while producing nonsensical eigenvectors and generated spectra, promoting misleading interpretations. A new method of unsupervised multimodal hyperspectral analysis of BEPS is demonstrated using long-short-term memory (LSTM) β-variational autoencoders (β-VAEs) . By including LSTM neurons, the ordinal nature of ferroelectric switching is considered. To improve the interpretability of the latent space, a variational Kullback-Leibler-divergency regularization is imposed . Finally, regularization scheduling of β as a disentanglement metric is leveraged to reduce user bias. Combining these experiment-inspired modifications enables the automated detection of ferroelectric switching mechanisms, including a complex two-step, three-state one. Ultimately, this work provides a robust ML method for the rapid discovery of electromechanical switching mechanisms in ferroelectrics and is applicable to other multimodal hyperspectral materials spectroscopies
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a deep learning
|
650 |
|
4 |
|a dimensionality reduction
|
650 |
|
4 |
|a ferroelectric switching
|
650 |
|
4 |
|a machine learning
|
650 |
|
4 |
|a multimodal hyperspectral imaging
|
650 |
|
4 |
|a unsupervised learning
|
700 |
1 |
|
|a Guo, Yichen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kaliyev, Alibek T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Agar, Joshua C
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 47 vom: 15. Nov., Seite e2202814
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:47
|g day:15
|g month:11
|g pages:e2202814
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202202814
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 47
|b 15
|c 11
|h e2202814
|