Why it is Unfortunate that Linear Machine Learning "Works" so well in Electromechanical Switching of Ferroelectric Thin Films

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 47 vom: 15. Nov., Seite e2202814
1. Verfasser: Qin, Shuyu (VerfasserIn)
Weitere Verfasser: Guo, Yichen, Kaliyev, Alibek T, Agar, Joshua C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article deep learning dimensionality reduction ferroelectric switching machine learning multimodal hyperspectral imaging unsupervised learning
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Machine learning (ML) is relied on for materials spectroscopy. It is challenging to make ML models fail because statistical correlations can mimic the physics without causality. Here, using a benchmark band-excitation piezoresponse force microscopy polarization spectroscopy (BEPS) dataset the pitfalls of the so-called "better", "faster", and "less-biased" ML of electromechanical switching are demonstrated and overcome. Using a toy and real experimental dataset, it is demonstrated how linear nontemporal ML methods result in physically reasonable embedding (eigenvalues) while producing nonsensical eigenvectors and generated spectra, promoting misleading interpretations. A new method of unsupervised multimodal hyperspectral analysis of BEPS is demonstrated using long-short-term memory (LSTM) β-variational autoencoders (β-VAEs) . By including LSTM neurons, the ordinal nature of ferroelectric switching is considered. To improve the interpretability of the latent space, a variational Kullback-Leibler-divergency regularization is imposed . Finally, regularization scheduling of β as a disentanglement metric is leveraged to reduce user bias. Combining these experiment-inspired modifications enables the automated detection of ferroelectric switching mechanisms, including a complex two-step, three-state one. Ultimately, this work provides a robust ML method for the rapid discovery of electromechanical switching mechanisms in ferroelectrics and is applicable to other multimodal hyperspectral materials spectroscopies
Beschreibung:Date Revised 24.11.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202202814