Effect of bicarbonate on nitrate-induced photosensitive degradation of sulfamethoxazole under UV irradiation

In this study, the influence of HCO3- on NO3--induced photosensitive degradation of sulfamethoxazole (SMX) under UV irradiation was investigated. It was found that the removal of SMX by UV in the presence of NO3- improved significantly compared to its photolysis, which was confirmed to be due to the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - 45(2024), 1 vom: 22. Jan., Seite 170-179
1. Verfasser: Liu, Yiqing (VerfasserIn)
Weitere Verfasser: Wang, Shixiang, Fu, Dongbin, Fu, Yongsheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article Sulfamethoxazole bicarbonate carbonate radical hydroxyl radical nitrate photolysis Bicarbonates JE42381TNV Nitrates Water Pollutants, Chemical
Beschreibung
Zusammenfassung:In this study, the influence of HCO3- on NO3--induced photosensitive degradation of sulfamethoxazole (SMX) under UV irradiation was investigated. It was found that the removal of SMX by UV in the presence of NO3- improved significantly compared to its photolysis, which was confirmed to be due to the role of hydroxyl radical (HO•) formed through UV-activated NO3-. However, the addition of HCO3- in UV/NO3- system could further enhance SMX degradation, which was verified to be ascribed to the formed carbonate radical (CO3•-) through the reaction of HCO3- with HO•. The second-order rate constant of CO3•- with SMX was determined to be 2.58 × 108 M-1 s-1. In UV/NO3-/HCO3- system, the reactive species for SMX removal were HO• and CO3•-, and the contribution of CO3•- to SMX degradation might be much higher than that of HO•. The concentration of NO3- was almost unchanged after reaction in UV/NO3- and UV/NO3-/HCO3- systems because of its regeneration. Based on the detected four transformation products, the possible degradation pathways of SMX in UV/NO3-/HCO3- system were proposed including hydroxylation, amino-oxidation and bond cleavage
Beschreibung:Date Completed 09.01.2024
Date Revised 09.01.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1479-487X
DOI:10.1080/09593330.2022.2102937