Effect of bicarbonate on nitrate-induced photosensitive degradation of sulfamethoxazole under UV irradiation
In this study, the influence of HCO3- on NO3--induced photosensitive degradation of sulfamethoxazole (SMX) under UV irradiation was investigated. It was found that the removal of SMX by UV in the presence of NO3- improved significantly compared to its photolysis, which was confirmed to be due to the...
Veröffentlicht in: | Environmental technology. - 1993. - 45(2024), 1 vom: 22. Jan., Seite 170-179 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article Sulfamethoxazole bicarbonate carbonate radical hydroxyl radical nitrate photolysis Bicarbonates JE42381TNV Nitrates Water Pollutants, Chemical |
Zusammenfassung: | In this study, the influence of HCO3- on NO3--induced photosensitive degradation of sulfamethoxazole (SMX) under UV irradiation was investigated. It was found that the removal of SMX by UV in the presence of NO3- improved significantly compared to its photolysis, which was confirmed to be due to the role of hydroxyl radical (HO•) formed through UV-activated NO3-. However, the addition of HCO3- in UV/NO3- system could further enhance SMX degradation, which was verified to be ascribed to the formed carbonate radical (CO3•-) through the reaction of HCO3- with HO•. The second-order rate constant of CO3•- with SMX was determined to be 2.58 × 108 M-1 s-1. In UV/NO3-/HCO3- system, the reactive species for SMX removal were HO• and CO3•-, and the contribution of CO3•- to SMX degradation might be much higher than that of HO•. The concentration of NO3- was almost unchanged after reaction in UV/NO3- and UV/NO3-/HCO3- systems because of its regeneration. Based on the detected four transformation products, the possible degradation pathways of SMX in UV/NO3-/HCO3- system were proposed including hydroxylation, amino-oxidation and bond cleavage |
---|---|
Beschreibung: | Date Completed 09.01.2024 Date Revised 09.01.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2022.2102937 |