|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM343133369 |
003 |
DE-627 |
005 |
20231226015724.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202202057
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1143.xml
|
035 |
|
|
|a (DE-627)NLM343133369
|
035 |
|
|
|a (NLM)35792703
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Wen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Toward Tissue-Like Material Properties
|b Inducing In Situ Adaptive Behavior in Fibrous Hydrogels
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.09.2022
|
500 |
|
|
|a Date Revised 16.09.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a The materials properties of biological tissues are unique. Nature is able to spatially and temporally manipulate (mechanical) properties while maintaining responsiveness toward a variety of cues; all without majorly changing the material's composition. Artificial mimics, synthetic or biomaterial-based are far less advanced and poorly reproduce the natural cell microenvironment. A viable strategy to generate materials with advanced properties combines different materials into nanocomposites. This work describes nanocomposites of a synthetic fibrous hydrogel, based on polyisocyanide (PIC), that is noncovalently linked to a responsive cross-linker. The introduction of the cross-linker transforms the PIC gel from a static fibrous extracellular matrix mimic to a highly dynamic material that maintains biocompatibility, as demonstrated by in situ modification of the (non)linear mechanical properties and efficient self-healing properties. Key in the material design is cross-linking at the fibrillar level using nanoparticles, which, simultaneously may be used to introduce more advanced properties
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a adaptive behavior
|
650 |
|
4 |
|a biomimetic hydrogels
|
650 |
|
4 |
|a multiresponsiveness
|
650 |
|
4 |
|a polyisocyanides
|
650 |
|
4 |
|a self-healing behavior
|
650 |
|
7 |
|a Biocompatible Materials
|2 NLM
|
650 |
|
7 |
|a Hydrogels
|2 NLM
|
700 |
1 |
|
|a Kumari, Jyoti
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yuan, Hongbo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Fan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kouwer, Paul H J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 37 vom: 10. Sept., Seite e2202057
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:37
|g day:10
|g month:09
|g pages:e2202057
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202202057
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 37
|b 10
|c 09
|h e2202057
|