The semiparametric regression model for bimodal data with different penalized smoothers applied to climatology, ethanol and air quality data

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 1 vom: 17., Seite 248-267
1. Verfasser: Vasconcelos, J C S (VerfasserIn)
Weitere Verfasser: Cordeiro, G M, Ortega, E M M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Additive model additive partial model generalized inverse Gaussian distribution semiparametric model splines
LEADER 01000naa a22002652 4500
001 NLM34229184X
003 DE-627
005 20231226013750.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1803812  |2 doi 
028 5 2 |a pubmed24n1140.xml 
035 |a (DE-627)NLM34229184X 
035 |a (NLM)35707795 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vasconcelos, J C S  |e verfasserin  |4 aut 
245 1 4 |a The semiparametric regression model for bimodal data with different penalized smoothers applied to climatology, ethanol and air quality data 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.06.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Semiparametric regressions can be used to model data when covariables and the response variable have a nonlinear relationship. In this work, we propose three flexible regression models for bimodal data called the additive, additive partial and semiparametric regressions, basing on the odd log-logistic generalized inverse Gaussian distribution under three types of penalized smoothers, where the main idea is not to confront the three forms of smoothings but to show the versatility of the distribution with three types of penalized smoothers. We present several Monte Carlo simulations carried out for different configurations of the parameters and some sample sizes to verify the precision of the penalized maximum-likelihood estimators. The usefulness of the proposed regressions is proved empirically through three applications to climatology, ethanol and air quality data 
650 4 |a Journal Article 
650 4 |a Additive model 
650 4 |a additive partial model 
650 4 |a generalized inverse Gaussian distribution 
650 4 |a semiparametric model 
650 4 |a splines 
700 1 |a Cordeiro, G M  |e verfasserin  |4 aut 
700 1 |a Ortega, E M M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 1 vom: 17., Seite 248-267  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:49  |g year:2022  |g number:1  |g day:17  |g pages:248-267 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1803812  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 1  |b 17  |h 248-267