The semiparametric regression model for bimodal data with different penalized smoothers applied to climatology, ethanol and air quality data

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 1 vom: 17., Seite 248-267
1. Verfasser: Vasconcelos, J C S (VerfasserIn)
Weitere Verfasser: Cordeiro, G M, Ortega, E M M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Additive model additive partial model generalized inverse Gaussian distribution semiparametric model splines
Beschreibung
Zusammenfassung:© 2020 Informa UK Limited, trading as Taylor & Francis Group.
Semiparametric regressions can be used to model data when covariables and the response variable have a nonlinear relationship. In this work, we propose three flexible regression models for bimodal data called the additive, additive partial and semiparametric regressions, basing on the odd log-logistic generalized inverse Gaussian distribution under three types of penalized smoothers, where the main idea is not to confront the three forms of smoothings but to show the versatility of the distribution with three types of penalized smoothers. We present several Monte Carlo simulations carried out for different configurations of the parameters and some sample sizes to verify the precision of the penalized maximum-likelihood estimators. The usefulness of the proposed regressions is proved empirically through three applications to climatology, ethanol and air quality data
Beschreibung:Date Revised 16.06.2022
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0266-4763
DOI:10.1080/02664763.2020.1803812