Robust inference under r-size-biased sampling without replacement from finite population

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 47(2020), 13-15 vom: 09., Seite 2808-2824
1. Verfasser: Economou, P (VerfasserIn)
Weitere Verfasser: Tzavelas, G, Batsidis, A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article ABC algorithm Finite population biased data petroleum basin weighted distributions
LEADER 01000naa a22002652 4500
001 NLM342288156
003 DE-627
005 20231226013745.0
007 cr uuu---uuuuu
008 231226s2020 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2019.1711031  |2 doi 
028 5 2 |a pubmed24n1140.xml 
035 |a (DE-627)NLM342288156 
035 |a (NLM)35707427 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Economou, P  |e verfasserin  |4 aut 
245 1 0 |a Robust inference under r-size-biased sampling without replacement from finite population 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a The case of size-biased sampling of known order from a finite population without replacement is considered. The behavior of such a sampling scheme is studied with respect to the sampling fraction. Based on a simulation study, it is concluded that such a sample cannot be treated either as a random sample from the parent distribution or as a random sample from the corresponding r-size weighted distribution and as the sampling fraction increases, the biasness in the sample decreases resulting in a transition from an r-size-biased sample to a random sample. A modified version of a likelihood-free method is adopted for making statistical inference for the unknown population parameters, as well as for the size of the population when it is unknown. A simulation study, which takes under consideration the sampling fraction, demonstrates that the proposed method presents better and more robust behavior compared to the approaches, which treat the r-size-biased sample either as a random sample from the parent distribution or as a random sample from the corresponding r-size weighted distribution. Finally, a numerical example which motivates this study illustrates our results 
650 4 |a Journal Article 
650 4 |a ABC algorithm 
650 4 |a Finite population 
650 4 |a biased data 
650 4 |a petroleum basin 
650 4 |a weighted distributions 
700 1 |a Tzavelas, G  |e verfasserin  |4 aut 
700 1 |a Batsidis, A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 47(2020), 13-15 vom: 09., Seite 2808-2824  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:47  |g year:2020  |g number:13-15  |g day:09  |g pages:2808-2824 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2019.1711031  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2020  |e 13-15  |b 09  |h 2808-2824