Robust inference under r-size-biased sampling without replacement from finite population

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 47(2020), 13-15 vom: 09., Seite 2808-2824
1. Verfasser: Economou, P (VerfasserIn)
Weitere Verfasser: Tzavelas, G, Batsidis, A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article ABC algorithm Finite population biased data petroleum basin weighted distributions
Beschreibung
Zusammenfassung:© 2020 Informa UK Limited, trading as Taylor & Francis Group.
The case of size-biased sampling of known order from a finite population without replacement is considered. The behavior of such a sampling scheme is studied with respect to the sampling fraction. Based on a simulation study, it is concluded that such a sample cannot be treated either as a random sample from the parent distribution or as a random sample from the corresponding r-size weighted distribution and as the sampling fraction increases, the biasness in the sample decreases resulting in a transition from an r-size-biased sample to a random sample. A modified version of a likelihood-free method is adopted for making statistical inference for the unknown population parameters, as well as for the size of the population when it is unknown. A simulation study, which takes under consideration the sampling fraction, demonstrates that the proposed method presents better and more robust behavior compared to the approaches, which treat the r-size-biased sample either as a random sample from the parent distribution or as a random sample from the corresponding r-size weighted distribution. Finally, a numerical example which motivates this study illustrates our results
Beschreibung:Date Revised 16.07.2022
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0266-4763
DOI:10.1080/02664763.2019.1711031