Elastic Lattice Enabling Reversible Tetrahedral Li Storage Sites in a High-Capacity Manganese Oxide Cathode

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 30 vom: 03. Juli, Seite e2202745
1. Verfasser: Huang, Weiyuan (VerfasserIn)
Weitere Verfasser: Yang, Luyi, Chen, Zhefeng, Liu, Tongchao, Ren, Guoxi, Shan, Peizhao, Zhang, Bin-Wei, Chen, Shiming, Li, Shunning, Li, Jianyuan, Lin, Cong, Zhao, Wenguang, Qiu, Jimin, Fang, Jianjun, Zhang, Mingjian, Dong, Cheng, Li, Fan, Yang, Yong, Sun, Cheng-Jun, Ren, Yang, Huang, Qingzhen, Hou, Guangjin, Dou, Shi-Xue, Lu, Jun, Amine, Khalil, Pan, Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Li-ion batteries elastic lattices layered oxide cathodes reversible tetrahedral sites ultrahigh capacity
LEADER 01000naa a22002652 4500
001 NLM341789968
003 DE-627
005 20231226012601.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202202745  |2 doi 
028 5 2 |a pubmed24n1139.xml 
035 |a (DE-627)NLM341789968 
035 |a (NLM)35657036 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Weiyuan  |e verfasserin  |4 aut 
245 1 0 |a Elastic Lattice Enabling Reversible Tetrahedral Li Storage Sites in a High-Capacity Manganese Oxide Cathode 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a The key to breaking through the capacity limitation imposed by intercalation chemistry lies in the ability to harness more active sites that can reversibly accommodate more ions (e.g., Li+ ) and electrons within a finite space. However, excessive Li-ion insertion into the Li layer of layered cathodes results in fast performance decay due to the huge lattice change and irreversible phase transformation. In this study, an ultrahigh reversible capacity is demonstrated by a layered oxide cathode purely based on manganese. Through a wealth of characterizations, it is clarified that the presence of low-content Li2 MnO3 domains not only reduces the amount of irreversible O loss; but also regulates Mn migration in LiMnO2 domains, enabling elastic lattice with high reversibility for tetrahedral sites Li-ion storage in Li layers. This work utilizes bulk cation disorder to create stable Li-ion-storage tetrahedral sites and an elastic lattice for layered materials, with a reversible capacity of 600 mA h g-1 , demonstrated in th range 0.6-4.9 V versus Li/Li+ at 10 mA g-1 . Admittedly, discharging to 0.6 V might be too low for practical use, but this exploration is still of great importance as it conceptually demonstrates the limit of Li-ions insertion into layered oxide materials 
650 4 |a Journal Article 
650 4 |a Li-ion batteries 
650 4 |a elastic lattices 
650 4 |a layered oxide cathodes 
650 4 |a reversible tetrahedral sites 
650 4 |a ultrahigh capacity 
700 1 |a Yang, Luyi  |e verfasserin  |4 aut 
700 1 |a Chen, Zhefeng  |e verfasserin  |4 aut 
700 1 |a Liu, Tongchao  |e verfasserin  |4 aut 
700 1 |a Ren, Guoxi  |e verfasserin  |4 aut 
700 1 |a Shan, Peizhao  |e verfasserin  |4 aut 
700 1 |a Zhang, Bin-Wei  |e verfasserin  |4 aut 
700 1 |a Chen, Shiming  |e verfasserin  |4 aut 
700 1 |a Li, Shunning  |e verfasserin  |4 aut 
700 1 |a Li, Jianyuan  |e verfasserin  |4 aut 
700 1 |a Lin, Cong  |e verfasserin  |4 aut 
700 1 |a Zhao, Wenguang  |e verfasserin  |4 aut 
700 1 |a Qiu, Jimin  |e verfasserin  |4 aut 
700 1 |a Fang, Jianjun  |e verfasserin  |4 aut 
700 1 |a Zhang, Mingjian  |e verfasserin  |4 aut 
700 1 |a Dong, Cheng  |e verfasserin  |4 aut 
700 1 |a Li, Fan  |e verfasserin  |4 aut 
700 1 |a Yang, Yong  |e verfasserin  |4 aut 
700 1 |a Sun, Cheng-Jun  |e verfasserin  |4 aut 
700 1 |a Ren, Yang  |e verfasserin  |4 aut 
700 1 |a Huang, Qingzhen  |e verfasserin  |4 aut 
700 1 |a Hou, Guangjin  |e verfasserin  |4 aut 
700 1 |a Dou, Shi-Xue  |e verfasserin  |4 aut 
700 1 |a Lu, Jun  |e verfasserin  |4 aut 
700 1 |a Amine, Khalil  |e verfasserin  |4 aut 
700 1 |a Pan, Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 30 vom: 03. Juli, Seite e2202745  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:30  |g day:03  |g month:07  |g pages:e2202745 
856 4 0 |u http://dx.doi.org/10.1002/adma.202202745  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 30  |b 03  |c 07  |h e2202745