Elastic Lattice Enabling Reversible Tetrahedral Li Storage Sites in a High-Capacity Manganese Oxide Cathode

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 30 vom: 03. Juli, Seite e2202745
1. Verfasser: Huang, Weiyuan (VerfasserIn)
Weitere Verfasser: Yang, Luyi, Chen, Zhefeng, Liu, Tongchao, Ren, Guoxi, Shan, Peizhao, Zhang, Bin-Wei, Chen, Shiming, Li, Shunning, Li, Jianyuan, Lin, Cong, Zhao, Wenguang, Qiu, Jimin, Fang, Jianjun, Zhang, Mingjian, Dong, Cheng, Li, Fan, Yang, Yong, Sun, Cheng-Jun, Ren, Yang, Huang, Qingzhen, Hou, Guangjin, Dou, Shi-Xue, Lu, Jun, Amine, Khalil, Pan, Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Li-ion batteries elastic lattices layered oxide cathodes reversible tetrahedral sites ultrahigh capacity
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
The key to breaking through the capacity limitation imposed by intercalation chemistry lies in the ability to harness more active sites that can reversibly accommodate more ions (e.g., Li+ ) and electrons within a finite space. However, excessive Li-ion insertion into the Li layer of layered cathodes results in fast performance decay due to the huge lattice change and irreversible phase transformation. In this study, an ultrahigh reversible capacity is demonstrated by a layered oxide cathode purely based on manganese. Through a wealth of characterizations, it is clarified that the presence of low-content Li2 MnO3 domains not only reduces the amount of irreversible O loss; but also regulates Mn migration in LiMnO2 domains, enabling elastic lattice with high reversibility for tetrahedral sites Li-ion storage in Li layers. This work utilizes bulk cation disorder to create stable Li-ion-storage tetrahedral sites and an elastic lattice for layered materials, with a reversible capacity of 600 mA h g-1 , demonstrated in th range 0.6-4.9 V versus Li/Li+ at 10 mA g-1 . Admittedly, discharging to 0.6 V might be too low for practical use, but this exploration is still of great importance as it conceptually demonstrates the limit of Li-ions insertion into layered oxide materials
Beschreibung:Date Revised 27.07.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202202745