Deep Generative Mixture Model for Robust Imbalance Classification

Discovering hidden pattern from imbalanced data is a critical issue in various real-world applications. Existing classification methods usually suffer from the limitation of data especially for minority classes, and result in unstable prediction and low performance. In this paper, a deep generative...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 03. März, Seite 2897-2912
1. Verfasser: Wang, Xinyue (VerfasserIn)
Weitere Verfasser: Jing, Liping, Lyu, Yilin, Guo, Mingzhe, Wang, Jiaqi, Liu, Huafeng, Yu, Jian, Zeng, Tieyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM341708828
003 DE-627
005 20231226012407.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3178914  |2 doi 
028 5 2 |a pubmed24n1138.xml 
035 |a (DE-627)NLM341708828 
035 |a (NLM)35648874 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Xinyue  |e verfasserin  |4 aut 
245 1 0 |a Deep Generative Mixture Model for Robust Imbalance Classification 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Discovering hidden pattern from imbalanced data is a critical issue in various real-world applications. Existing classification methods usually suffer from the limitation of data especially for minority classes, and result in unstable prediction and low performance. In this paper, a deep generative classifier is proposed to mitigate this issue via both model perturbation and data perturbation. Specially, the proposed generative classifier is derived from a deep latent variable model where two variables are involved. One variable is to capture the essential information of the original data, denoted as latent codes, which are represented by a probability distribution rather than a single fixed value. The learnt distribution aims to enforce the uncertainty of model and implement model perturbation, thus, lead to stable predictions. The other variable is a prior to latent codes so that the codes are restricted to lie on components in Gaussian Mixture Model. As a confounder affecting generative processes of data (feature/label), the latent variables are supposed to capture the discriminative latent distribution and implement data perturbation. Extensive experiments have been conducted on widely-used real imbalanced image datasets. Experimental results demonstrate the superiority of our proposed model by comparing with popular imbalanced classification baselines on imbalance classification task 
650 4 |a Journal Article 
700 1 |a Jing, Liping  |e verfasserin  |4 aut 
700 1 |a Lyu, Yilin  |e verfasserin  |4 aut 
700 1 |a Guo, Mingzhe  |e verfasserin  |4 aut 
700 1 |a Wang, Jiaqi  |e verfasserin  |4 aut 
700 1 |a Liu, Huafeng  |e verfasserin  |4 aut 
700 1 |a Yu, Jian  |e verfasserin  |4 aut 
700 1 |a Zeng, Tieyong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 03. März, Seite 2897-2912  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:03  |g month:03  |g pages:2897-2912 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3178914  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 03  |c 03  |h 2897-2912