Deep Generative Mixture Model for Robust Imbalance Classification

Discovering hidden pattern from imbalanced data is a critical issue in various real-world applications. Existing classification methods usually suffer from the limitation of data especially for minority classes, and result in unstable prediction and low performance. In this paper, a deep generative...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 03. März, Seite 2897-2912
1. Verfasser: Wang, Xinyue (VerfasserIn)
Weitere Verfasser: Jing, Liping, Lyu, Yilin, Guo, Mingzhe, Wang, Jiaqi, Liu, Huafeng, Yu, Jian, Zeng, Tieyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Discovering hidden pattern from imbalanced data is a critical issue in various real-world applications. Existing classification methods usually suffer from the limitation of data especially for minority classes, and result in unstable prediction and low performance. In this paper, a deep generative classifier is proposed to mitigate this issue via both model perturbation and data perturbation. Specially, the proposed generative classifier is derived from a deep latent variable model where two variables are involved. One variable is to capture the essential information of the original data, denoted as latent codes, which are represented by a probability distribution rather than a single fixed value. The learnt distribution aims to enforce the uncertainty of model and implement model perturbation, thus, lead to stable predictions. The other variable is a prior to latent codes so that the codes are restricted to lie on components in Gaussian Mixture Model. As a confounder affecting generative processes of data (feature/label), the latent variables are supposed to capture the discriminative latent distribution and implement data perturbation. Extensive experiments have been conducted on widely-used real imbalanced image datasets. Experimental results demonstrate the superiority of our proposed model by comparing with popular imbalanced classification baselines on imbalance classification task
Beschreibung:Date Completed 07.04.2023
Date Revised 11.04.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2022.3178914