Unsupervised Contrastive Cross-Modal Hashing

In this paper, we study how to make unsupervised cross-modal hashing (CMH) benefit from contrastive learning (CL) by overcoming two challenges. To be exact, i) to address the performance degradation issue caused by binary optimization for hashing, we propose a novel momentum optimizer that performs...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 26. März, Seite 3877-3889
1. Verfasser: Hu, Peng (VerfasserIn)
Weitere Verfasser: Zhu, Hongyuan, Lin, Jie, Peng, Dezhong, Zhao, Yin-Ping, Peng, Xi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM34139551X
003 DE-627
005 20231226011658.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3177356  |2 doi 
028 5 2 |a pubmed24n1137.xml 
035 |a (DE-627)NLM34139551X 
035 |a (NLM)35617190 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Peng  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Contrastive Cross-Modal Hashing 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we study how to make unsupervised cross-modal hashing (CMH) benefit from contrastive learning (CL) by overcoming two challenges. To be exact, i) to address the performance degradation issue caused by binary optimization for hashing, we propose a novel momentum optimizer that performs hashing operation learnable in CL, thus making on-the-shelf deep cross-modal hashing possible. In other words, our method does not involve binary-continuous relaxation like most existing methods, thus enjoying better retrieval performance; ii) to alleviate the influence brought by false-negative pairs (FNPs), we propose a Cross-modal Ranking Learning loss (CRL) which utilizes the discrimination from all instead of only the hard negative pairs, where FNP refers to the within-class pairs that were wrongly treated as negative pairs. Thanks to such a global strategy, CRL endows our method with better performance because CRL will not overuse the FNPs while ignoring the true-negative pairs. To the best of our knowledge, the proposed method could be one of the first successful contrastive hashing methods. To demonstrate the effectiveness of the proposed method, we carry out experiments on five widely-used datasets compared with 13 state-of-the-art methods. The code is available at https://github.com/penghu-cs/UCCH 
650 4 |a Journal Article 
700 1 |a Zhu, Hongyuan  |e verfasserin  |4 aut 
700 1 |a Lin, Jie  |e verfasserin  |4 aut 
700 1 |a Peng, Dezhong  |e verfasserin  |4 aut 
700 1 |a Zhao, Yin-Ping  |e verfasserin  |4 aut 
700 1 |a Peng, Xi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 26. März, Seite 3877-3889  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:26  |g month:03  |g pages:3877-3889 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3177356  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 26  |c 03  |h 3877-3889